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1 Syntax and semantics

Mathematical logic, broadly speaking, is the field of mathematics which is con-
cerned with the language we use to describe and reason about mathematical
objects. That is, it highlights the distinction between syntax (the language)
and semantics (the objects themselves). This may sound philosophical, but
mathematicians constantly describe objects of interest by syntactic presenta-
tions, and then reason about the object by manipulating the syntax, e.g. the
description of the circle as the set of solutions of the equation z? +y? = 1 in
the plane, the coordinatization of a manifold by explicit charts, the specification
of a construction or function by an algorithm, the presentation of a group by
generators and relations, or the description of a function as an infinite series. If
we go the extra step to viewing the syntax as a mathematical object to study
in its own right, we begin doing mathematical logic.

There are many kinds of syntax in mathematics (as evidenced by the exam-
ples just given), and there are many logical systems. One of the most important
is first-order logic, which is the system we will study in this course. Why is first-
order logic important? For practical reasons: it is fairly expressive, while also
exhibiting a number of nice properties, like the compactness theorem and a
sound and complete proof system. And for foundational reasons: ZFC set the-
ory, expressed in first-order logic, is the standard foundation for mathematics
(but we will not discuss any foundational issues in this class).

Like any logic, first-order logic has a proof theory and a model theory. Proof
theory is focused on syntax: systems for formal reasoning in the logic, and
their properties. On the other hand, model theory is focused on semantics. The
primary interest is in the relationships between properties of a first-order theory
(a set of axioms which are sentences of first-order logic), its class of models (the
mathematical structures satisfying the axioms), and definability within these
models (elements, functions, sets, and relations definable by formulas of first-
order logic).
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Model theory is very abstract, in that we typically study first-order theories
and structures in general, rather than any particular theory or structure. But we
will often ground ourselves and obtain applications by specializing the general
theory to particular examples.

Here, “mathematical structure” has a precise meaning: a structure is a set
(or a family of sets), equipped with distinguished elements, operations, and
relations. For example, we could consider the real numbers R as a structure
in the language of order {<}, the language of abelian groups {0,+,—}, the
language of fields {0, 1, 4+, —, x }, or even larger languages suitable for elementary
calculus, like {0,1,+, —, X, <, e*,sin(x)}. The choice of a language determines
what we can say about the structure. For example, it determines a first-order
theory with a class of models to study alongside R: the class of dense linear
orders, or torsion-free divisible abelian groups, or real closed fields. It also
determines what is definable inside R: rather than studying all functions R — R
(or all continuous functions or all analytic functions), in model theory we study
those functions which are definable in the language, i.e., those we can actually
write down.

What is a first-order formula? Let me give some examples. Here is a formula
in the language of groups:

TYy=y-x
For elements = and y In a group G, this formula expresses that « and y commute.
Here is another:
VeVy (z-y =y )

In a group G, this formula expresses that G is abelian. In the first formula,
x and y are free variables (we will say it is a formula in context {z,y}), so
the formula expresses something about a pair of elements from a group. The
second formula has no free variables (we will say it is a sentence), so the formula
expresses something global about the group.

Here is a formula in the language of rings:

y(z-y=1)

For an element z in a ring R, this formula expresses that z is a unit (i.e., « has
a multiplicative inverse).
Here is a sentence in the language of orders:

JeVyly=xzVy<zx)

In a linear order L, this formula expresses that the order has a greatest element.

How are the formulas above built? We can begin with variables, which refer
to elements of a structure. From the variables and the distinguished elements
and operations, we build terms which refer to other elements. The terms in the
formulas above are z, y, x -y, vy - ¥, and 1. Next, we make basic statements
about the terms, called atomic formulas. The atomic formulas in the formulas
abovearez-y=vy-z,x-y =1,y =, and y < x. Finally, we put these atomic
formulas together using logic connectives and quantifiers (which bind variables).



In first-order logic, the logical connectives are T and L (for true and false), A
(and), Vv (lor), and = (not). The quantifiers are V (for all) and 3 (exists).

Now, if we are given a structure (with explicit distinguished elements, op-
erations, and relations) and an assignment of free variables to elements of the
structure, we can make sense of any first-order formula in that structure in the
obvious way.

What makes the logic “first-order” is that the variables and quantifiers range
only over elements of the structure in question, not over higher-order objects
like subsets or functions on that structure, and not over external sets like the
natural numbers (unless the structure in question happens to be N, of course).

At the beginning of the course, we need to make all this precise, defining the
syntax and semantics of first-order logic one piece at a time, as shown in the
table below.

’ Syntax \ Semantics ‘
Vocabularies | Structures
Variables Assignments
Terms Evaluation
Formulas Satisfaction
Theories Models

As the course proceeds, we will develop the basics of model theory assuming
no prior background: the compactness and Lowenheim-Skolem theorems, real-
izing and omitting types, quantifier elimination, and the structure of countable
models of complete theories. However, I will put an emphasis on some topics
that are typically treated briefly, if at all, in a first course: fragments of first-
order logic (especially the Horn, positive existential, and existential fragments),
existentially closed structures, and model complete theories. For example, I
plan to present a little-known proof of the compactness theorem, due to Poizat,
that uses these concepts.

1.1 Languages and structures

Definition 1.1. A first-order language L is a set, whose elements are called
symbols. Each symbol s € L is designated as a function symbol or a relation
symbol, and comes with an arity ar(s) € N.

We are intentionally vague about what counts as a symbol; the name symbol
is meant to suggest something that you could write down with a pencil on paper,
but we have no intention of formalizing this notion. In practice, real-world
symbols on paper can be encoded as mathematical objects (e.g. sets) in any
way you like, and a symbol can be any mathematical object. In particular, a
vocabulary may be uncountably infinite.

Intuitively, the arity of a symbol is the number of inputs it takes. The words
unary, binary, and ternary mean arity 1, 2, and 3, respectively, and we also
write n-ary to mean arity n. A 0-ary function symbol is called a constant
symbol, and a 0-ary relation symbol is called a proposition symbol.



Example 1.2. The language of groups is Lgroup = {€,-, '}, where e is a
constant symbol, - is a binary function symbol, and ~! is a unary function
symbol (for the inverse operation).

The language of rings is Lring = {0,1,+, —, -}, where 0 and 1 are constant
symbols, + and - are binary function symbols, and — is a unary function symbol
(for the additive inverse operation).

The language of strict orders is Lgo;qg = {<}, where < is a binary relation
symbol. The language of orders is Lo, = {<}, where < is a binary relation
symbol. Note that the difference between L50.q and Loyq is purely cosmetic.

The language of ordered rings is Lordring = LRingULsora = {0,1,+, —, -, <}.
For a ring R, the language of R-modules is Lr.yoa = {0, +, —}U{\. | ¢ € R},
where 0 is a constant symbol, 4+ is a binary function symbol, — is a unary

function symbol, and each . is a unary function symbol (for multiplication by
the scalar ¢). This language is uncountable when R is, e.g., in the case of vector
spaces over the real or complex numbers.

In all further discussions, we always have in the background a language
L, and we often omit mention of the language unless there a possibility for
confusion, e.g., if there are multiple languages in play.

Definition 1.3. An L-structure is a set A equipped with:
e For each function symbol f € £, a function f4: A>()) — A,
e For each relation symbol R € L, a relation R4 C A>(/),

In the case of a constant symbol ¢, we have ¢*: A — A. The set A° is a
singleton set {*} (whose element x is the unique O-tuple from A, i.e., the empty
sequence or empty function), and we identify ¢ with the element ¢ (%) € A.

In the case of a proposition symbol P, we have P4 C A° = {x}, and P4 is
either {x} (“true”) or @ (“false”).

Contrary to a common convention, we do not require structures to be non-
empty in general. But note that if £ contains any constant symbols, then any
L-structure will be non-empty, since it must contain elements interpreting the
constant symbols.

Example 1.4. Asin Example the language of rings is Lring = {0,1,+, —, -}
Any ring R is an Lring-structure in an obvious way, where 0% is the zero element
of the ring, +% is the addition operation in the ring, etc. Note, however, that
not every Lging-structure is a ring. Indeed, in an Lring-structure, the symbols
can be interpreted as arbitrary functions and relations. We will need to impose
axioms to restrict ourselves to natural classes of structures.

It is also worth noting at this point that the interpretations of function sym-
bols must be total. It is tempting to extend the language of rings to a language
of fields by adding a unary function symbol ~! for multiplicative inverse. But
the interpretation of ~! in a field K would have to be a total function K — K,
and 0 has no multiplicative inverse. One could make the ad hoc choice that
0~! = 0, but this can lead to unintuitive results later on interpretations of



terms. For this reason, we typically use the language of rings when discussing
fields; we will see later that the multiplicative inverse function is a definable
function in this context.

1.2 Variables and assignments

Whenever we consider a term or formula, we would like to specify what free
variables are in play. This is called the variable context of the term or formula.
Since terms and formulas are finite syntactic objects, we are primarily interested
in finite variable contexts, but it is sometimes useful to consider infinite contexts,
so we do not restrict the definition to the finite case.

Definition 1.5. A variable context is a set, whose elements are called vari-
ables.

Just as with symbols, we will be intentionally vague about what counts as
a variable, but we will follow the usual convention of writing them with letters

near the end of the alphabet, like x,y,z,... or zg,x1,Z2,.... We will often
write a single letter, like x, for a variable context containing multiple variables.
For example, we might have z = {zg,...,xn_1}.

Definition 1.6. Given a variable context x and a structure A, an assignment
of z in A is a function a: x — A. We denote by A® the set of all assignments
of z in A.

If = {xg,...,2,—1} is a variable context with n variables, and a € A*, we
write a; for a(x;), the element of A assigned to the variable a;. There is a natural
bijection between A% and A™, the set of n-tuples from A, carrying a € A* to
(ag, ..., an—1) the n-tuple of interpretations of the variables (xg,...,2Zp—_1).

1.3 Terms and evaluation

Terms are syntactic expressions built from variables and function symbols that
name elements of a structure.

Definition 1.7. An L-term in context x is one of the following;:
e A variable from .

e A composite term f(ty,...,t,), where f € L is an n-ary function symbol
and tq,...,t, are L-terms in context x.

We write Term, (L) for the set of all L-terms in context z, dropping £ from the
notation when it is clear from context.

Note that if ¢ € L is a constant symbol (i.e., a 0-ary function symbol), then
c is a term. Indeed, it is the composite term formed from the function symbol
c and 0 additional terms in context x.

The set Term, is defined recursively, so we obtain methods of proof by
induction and construction by recursion, with variables as the base case and the



formation of composite terms as the inductive step. Sometimes it is useful to
handle the constant symbols as a separate base case.

Example 1.8. In the language Lordring 0of ordered rings, the following are
terms in context {z,y}:

y, 0, (2+0)-(-y), ((w-2)-2)-2 (-(1+1) =

Of course, these are also terms in the language Lging of rings. The presence of
the relation symbol < is irrelevant for terms.

Note that we use the natural notation for our symbols when they differ from
the formal syntax described above, for example writing (240) instead of +(z, 0).
We use parentheses freely to avoid ambiguity. We will often to abbreviate terms
in natural ways, e.g. by writing ((z - ) -x) -z as 2*. But for this to make sense,
we need to be working in a context where associativity of - is assumed.

Definition 1.9. Let A be an L-structure, let ¢ be an £-term in context z, and
let a € A®. Then we define the evaluation of t at a, written t4(a), by recursion
on t:

e If t is a variable z; in z, t4(a) = a(z;) = a;.

e If t is a composite term f(t1,...,t,), then we have elements t{*(a) € A by
recursion for all 1 < < n. We define t4(a) = fA(t{'(a),...,t2(a)).

Given a term t € Term, and a structure A, there is a function t4: A* — A,
called a term function, defined by a — t*(a).

We often write ¢(z) to denote a term ¢ in context z (suggesting a function
to which we can “plug in” an assignment a € A® for the variables z). A term
always comes with an associated variable context, even if it is not explicit in
the notation.

If ¢ is a term in context x, and x C y, then we can also view t as a term t’ in
the larger context y. Indeed, the context only restricts which variables can be
mentioned. The term functions 4 and (#')* have different domains: A® and AY
respectively. But they have the same behavior, in the sense that for all b € AY,

t4(bl.) = (') (0).
Rigorously proving the assertions in the previous paragraph is a good straight-
forward exercise to make sure you understand proof by induction on terms.

1.4 Formulas and satisfaction

Formulas are syntactic expressions built from terms using =, relation symbols,
and logical connectives and quantifiers. While terms evaluate to elements of a
structure, formulas evaluate to “true” or “false”.

Definition 1.10. An atomic L-formula in context x is one of the following:

e (t1 =t2), where t; and to are L-terms in context .
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e R(ty,...,t,), where R € L is an n-ary relation symbol and t1,...,t, are
L-terms in context x.

We write At (L) for the set of all atomic £-formula in context x, dropping £
from the notation when it is clear from context.

Definition 1.11. An £-formula in context x is one of the following:
e An atomic L-formula in context x.
e T or L.
e (YAX), (¥Vx),or 9, where ¢ and x are L-formulas in context x.

e Jy1) or Yy, where y is a variable not in x and ¢ is an L-formula in
context z U {y}.

We write Form, (L) for the set of all L-formula in context x, dropping £ from
the notation when it is clear from context.

This is a recursive definition (simultaneously across all contexts ), so we
obtain methods of proof by induction and construction by recursion, with atomic
formulas and T and L as base cases and the formation of formulas by boolean
connectives and quantifiers as inductive steps.

As consequence of the way quantifiers and contexts interact in our defini-
tion, rebinding of variables is not allowed (contrary to the convention in some
presentations of first-order logic). For example, 3y Vy (z < y) is not a formula
in context {z}, since Vy (z < y) is not a formula in context {x,y}.

Example 1.12. In the language Lordring of ordered rings, the following are
formulas:

Context {x,y,2}: (z-z)+(x+2)+1=0, z+2z<y, Jw(z -w=1)
Empty context @: =(0=1), Vz(x=0VIy(z-y=1))

Note that we use the natural notation for our symbols when they differ from the
formal syntax described above, for example writing x < y instead of <(z,y). In
the context of rings, we could rewrite the first example as 22 + 2z +1 = 0.

We will also employ the following standard shorthands:
o (t1 # to) is shorthand for —(t; = t3).

e (¢ — x) is shorthand for (=9 V x).

e (1 <> x) is shorthand for ((¢p — x) A (x = ¥)).

e A\, i and \/_, ¢; are shorthands for (... ((¢1 A w2) Aws) - Agy) and
(.. ((p1 V2) V3) -+ V py), respectively. In the case n = 0, the empty
conjunction is T and the empty disjunction is L.



e When y = {y1,...,Yn} is a finite set of variables, Jy ¢ is shorthand for
Fy1 - .. Jynyp, and Yy @ is shorthand for Vy; ... Vy,p. Technically we need
to choose an order in which to quantify the variables, but this does not
change the meaning of the formula.

The following definition, known as “Tarski’s Definition of Truth” explains
what it means for a structure to satisfy a formula by giving the various logical
constructs their natural meanings (e.g., A means “and”). The result may seem
trivial, but the point is that this is a formal definition by recursion and hence
can be used to prove things by induction on formulas.

Definition 1.13. Let A be an L-structure, let ¢ be an L-formula in context x,
and let @ € A®. We define the relation A = ¢(a), read A satisfies ¢(a) or ¢ is
true of a in A, by recursion on ¢:

o If pis (t; = t3), then A |= ¢(a) iff t(a) = t{(a).

o If is R(ty,...,t,), then A |= @(a) iff (t{*(a),...,t2(a)) € RA.

o If pis T, then A = p(a).

o If pis L, then A}~ p(a).

o If v is (¢ A x), then A = p(a) iff A E¥(a) and A = x(a).

o If pis (¥ V x), then A = p(a) iff A = 1(a) or A = x(a).

o If v is =), then A | ¢(a) iff A = ¢(a).

o If p is Jy 1, then A = ¢(a) iff there exists b € A such that A = ¢(a,b).
o If p is Yy, then A |= p(a) iff for all b € A, A |=1(a,b).

In the quantifier clauses, 9 is a formula in context ' = xU{y}, and A |= ¢(a,b)
is shorthand for A | ¢(a’), where @’ € A™ extends a by assigning the new
variable y to b.

Given a formula ¢ € Form, and a structure A, we define

p(A) ={a e A" | A= p(a)}

and call this a definable set.

We often write ¢(x) to denote a formula ¢ in context z. A formula always
comes with an associated context, even if it is not explicit in the notation.

If ¢ is a formula in context x, and x C y (with no variable in y appearing
bound by a quantifier in ¢), then we can also view ¢ as a formula ¢’ in the
larger context y. The definable sets ¢(A4) and ¢'(A) live in different Cartesian
powers of A: ¢(A) C A®, while ¢'(A) C AY. But for all b € AY, we have

A |= o(b|,) if and only if A = ¢'(b).

Again, proving these assertions is a good exercise in proof by induction on
formulas.



1.5 Theories and models

Definition 1.14. An L-sentence is an L-formula in the empty context.

Some variables may appear in a sentence, but they must all be bound by
quantifiers. When A is a structure, there is a unique assignment * € A, so the
satisfaction of a sentence ¢ does not depend on a choice of variable assignment.
We write A = ¢ or A [~ ¢, instead of A = ¢(x) or A = o(*). Intuitively, a
sentence expresses a property of A, rather than a property of tuples from A. In
terms of definable sets, a sentence defines a subset of A?, which is either {x}
(“true”) or @ (“false”).

Definition 1.15. An L-theory is a set of L-sentences. An L-structure M is a
model of an L-theory T, written M =T, if M |E ¢ for all ¢ € T

We now overload the symbol = further.

Definition 1.16. If T is an L-theory and ¢ is an L-sentence, then T entails
o, written T |= ¢, if every model of T' satisfies ¢.

Example 1.17. The Lgroup theory of groups, Taroup, consists of the following
three sentences:

VavVyVz ((z-y) - 2
Vo ((z-e=x) A
Vo ((z-z ' =e)A

Of course, an Laroup-structure G is a group if and only if G = Taroup-
We have
Terowp EVE (2 -2 =€) = VaVy (z-y =y - x),

since all groups of exponent 2 are abelian.
On the other hand, we have

TGroup b’é vay (37 Y=y ZC),

since there exists a group which is not abelian.
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2 Maps between structures

Now that we have set up a very general framework for studying mathemati-
cal structures, we want to establish some basic results which are common to
structures in all languages, e.g., regarding substructures and homomorphisms
between structures. In this section, we will also introduce the notion of a frag-
ment of first-order logic, morphisms preserving the formulas in a fragment, and
the method of diagrams.

2.1 Substructures

Suppose A is a subset of an L-structure B. We say that A is L-closed if it is
closed under the functions f4 for all function symbols f € L, i.e., if ar(f) = n,
then for all (ay,...,a,) € A", we have fZ(aq,...,a,) € A.

If ¢ is a constant symbol, the case n = 0 of the definition implies that c¢® € A.

If £ is a relational language (i.e., it contains no function symbols), then every
subset of B is L-closed.

If A C B is L-closed, then we can turn A into an L-structure, called the
induced substructure on A, in a natural way:

o fAay,...,an) = fB(ai1,...,ay,) for each n-ary function symbol f € L
and each (ai,...,a,) € A™.

e (ay,...,a,) € R4 if and only if (ai,...,a,) € RP for each n-ary relation
symbol R € £ and each (aq,...,a,) € A".

If general, if A and B are L-structures and A C B, we say that A is a
substructure of B if the interpretations of the symbols in £ in A are those
induced from B. That is, if A is L-closed in B, f4 = fB|sn for each n-ary
function symbol f € £, and R* = RE N A" for each n-ary relation symbol
RelLl.

Lemma 2.1. Let B be an L-structure, and let A C B be an arbitrary subset.
Then there is a smallest substructure of B containing A, denoted (A)p and
called the substructure generated by A. The underlying set of (A)p is

{tB(a) | t is a term in context x, and a € A},

Proof. First, we show that (A)p = {tP(a) | t is a term in context x, and a €
A%} is L-closed. Let f € £ be an n-ary function symbol. Let t¥(a1),...,t3(a,)
be elements of (A) 5. Each ¢; is a term in context x;, and a; € A%. By renaming
variables, we may assume that the x; are pairwise disjoint. Let x be the context
UZL:1 x;, and let a € A* be the assignment which restricts to a; on z;. Then we
can view each term ¢; as a term t; in context x, and we have (¢,)Z(a) = tZ(a;).

Let t be the composite term f(¢},...,t ) in context x. Now:

rv'n

P (@), -t (an) = fP((#) P (a), -, ()P (@) = t7(a) € (4) B,

11
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so (A)p is L-closed. Tt follows that (A)p is the underlying set of a substructure
of B.

To see that A C (A)pg, for each a € A, let t be the term x in context {z},
and denote by a the assignment x + a in A%. Then a = tP(a) € (A)p, so
AC (A)p.

Finally, we show that (A)p is the smallest substructure of B containing A.
Suppose C' is a substructure of B containing A. To show (A)p C C, it suffices
to show that t®(a) € C for every term t in context x and a € A*. We prove
this by induction on t.

If t is a variable z;, then t%(a) = a; € A C C.

If t is a composite term f(t1,...,t,), then t?(a) = f2(tP(a),...,tB(a)). By
induction, t#(a) € C for all 1 < i < n, and hence fB(tP(a),...,t5(a)) € C,

n

since C is L-closed. O

We drop the subscript B from (A)p when it is clear from context.

2.2 Homomorphisms and embeddings

Definition 2.2. If A and B are L-structures, an £L-homomorphism h: A — B
is a function such that:

e For every n-ary function symbol f € £ and for every tuple (aq,...,a,)
from A, h(f(a1,...,a,)) = fB(h(a1),. .., h(an)).

e For every n-ary relation symbol R € £ and for every tuple (aq,...,a,)
from A, if (ai,...,a,) € RA, then (h(a1),...,h(a,)) € RE. We say h
preserves R.

If ¢ € L is a constant symbol, the case n = 0 in the definition implies that
h(c?) = cB.

Definition 2.3. A homomorphism h: A — B is an £L-embedding if:

e h is injective.

e For every n-ary relation symbol R € £ and for every tuple (aq,...,a,)
from A, if (h(a1),...,h(a,)) € RB, then (a1,...,a,) € R*. We say h
reflects R.

For most classes mathematical structures (groups, rings, graphs, etc.), the
general notion of homomorphism defined above agrees with the specialized no-
tion of homomorphism defined for that class (group homomorphisms, ring ho-
momorphisms, graph homomorphisms, etc.). But it is sensitive to the choice of
language.

For example, if we consider the language £ = {0, +, —, -} (without a constant
symbol for 1), there are £-homomorphisms R — S between unital rings which
fail to map 17 to 15.

For another example, any homomorphism between two linear orders in the
language Lsora = {<} must be strictly increasing (i.e., a < b implies h(a) <

12



h(b)) and hence injective. But a homomorphism between two linear orders in
the language Lo,q = {<} need only be weakly increasing (i.e., a < b implies
h(a) < h(b)) and may fail to be injective.

Embeddings are largely important because of their connection to the no-
tion of substructure: If A and B are substructures and A C B, then A is a
substructure of B if and only if the inclusion map 7: A — B is an embedding.

Homomorphisms and embeddings are defined in terms of the symbols in the
language. A natural question is: how do they interact with the rest of our logical
structure? First, we show they commute with the evaluation of terms.

Given a function h: A — B and an assignment a € A%, we write h(a) for
(hoa) € B*. If x = {xg,...,2n—1} and a assigns the variables in x to the
elements (ag,...,a,—1), then h(a) assigns the variables in z to the elements

(h(ag), ..., h(an-1)).

Lemma 2.4. Let h: A — B be a homomorphism. Then for any term t(z) and
any assignment a € A*, we have

h(t*(a)) = t%(h(a)).
Proof. By induction on t.

If ¢ is a variable x; in x, then h(t4(a)) = h(a;) = tB(h(a)).
If ¢ is a composite term f(t1,...,t,), then

WA (@) = AP ) 1 (@)
= fB(h(ti(a)), ..., h(t2(a))) h is a homomorphism
= fB(tB(h(a)),...,t2(h(a))) by induction
=t (n(a)). O

Definition 2.5. Let A and B be L-structures, and let h: A --» B be a partial
function, i.e., a function C — B for some set C' C A. We say that h preserves
an L-formula ¢(z) when for any ¢ € C?, if A = ¢(c¢), then B | ¢(h(c)). We
say that h reflects ¢(x) when for any ¢ € C?, if B = p(h(c)), then A = ¢(c).

Remark 2.6. A partial function h preserves ¢ if and only if it reflects —¢.
Indeed, h reflects —¢p if and only if B = —p(h(a)) implies A | —¢(a) if and
only if A = ¢(a) implies B |= ¢(h(a)) if and only if h preserves .

You can think of the next proposition as a generalization of the conditions
for defining a homomorphism of groups G — H by defining a function on the
generators of G. To be well-defined, the images of the generators in H have to
satisfy all the same relations as the generators do in G.

Proposition 2.7. Let A and B be L-structures, and let h: A --» B be a partial
function defined on a set of generators for A. That is, the domain of h is C C A
with A = (C)a. Then h extends to a homomorphism h': A — B if and only if
h preserves all atomic formulas. Moreover, in this case h' is unique.
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Proof. Suppose h extends to a homomorphism h': A — B. Let ¢(z) be an
atomic formula, and let ¢ € C*. We show that h preserves .

Case 1: pis t; = ty. If A | @(c), then t{(c) = t5'(c), so W (t{(c)) =
h'(ts'(c)). By Lemma B (t2(c)) = tB(h'(c)) = tB(h(c)) for i € {1,2}, so
tB(h(c)) = t£(h(c)), and B k= p(h(c).

Case 2: ¢ is R(t1,...,tn). If A |= ¢(c), then (t(c),...,td(c)) € R4, so
(W' (t1(c)), ..., W (t2(c))) € RB, since h’ preserves R. Again, by Lemma
W (I (e) = tB(H(0) = tB(h(e)) for 1 < i < n, 50 (B(R(C)),-.. B (h(e))) €
RE. and B |= ¢(h(c)).

Conversely, suppose h preserves all atomic formulas. We will show that h
extends to a homomorphism h’': A — B. Since A = (C) 4, by Lemma every
element of A can be written as t“(c) for some term t in context z and some
c € C". Note that given finitely many elements of A, we can assume that they
have the form t{!(c),...,t2(c), where each term ¢; is in the same context = and
¢ € C*, by expanding the context of each term as in the proof of Lemma [2.1]

We define b/ (t4(c)) = tP(h(c)). I claim this is well-defined. If #{!(c) = t4' (c),
then A = (t; = t2)(c¢), which implies B = (¢; = t3)(h(c)), since h preserves
atomic formulas. So t2(h(c)) = tF(h(c)), and k' is well-defined.

Next, we check that h’ commutes with the function symbols in the language.
Let f € £ be an n-ary function symbol, and let (ay, . ..,a,) € A™ with a; = t{(c)
for each i. Let s be the composite term f(¢1,...,%,). Then:

W (a1, an)) = B (A (0), . 13(0))
h

= fP7 (h(c)),-.. .t (h(c))
= [Pt (), . 1 (1 (e))
= fB(W(ay),..., N (an))

Finally, let R € £ be an n-ary relation symbol, and let (ay,...,a,) € A™
with each a; = t(c). Let ¢(x) be the atomic formula R(ti,...,t,). Then
(ai,...,a,) € R4 if and only if (t{(c),...,t2(c)) € R4 if and only if A |= ¢(c).
Since h preserves atomic formulas, this implies B = ¢(h(c)), which means
(tF(h(c)); - -t (h(0)) = (W(t{(c)),... . W ((0))) = (W(ar),.... W (an)) €
RB. Thus h/ is a homomorphism.

It remains to show that A’ is unique. Suppose h”: A — B is a homomor-
phism extending h. Let a € A, and suppose a = t*(c) for some ¢ € C*. By
Lemma h"(a) = W' (t4(c)) = tA (W' (c)) = t*(h(c)) = W' (t*(c)) = I'(a), so
R =n. O

It is an immediate consequence of Proposition that a total function
h: A — B is a homomorphism if and only if it preserves all atomic formu-
las. We now prove the corresponding characterization of embeddings. A literal
is an atomic or negated atomic formula.
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Proposition 2.8. Let A and B be L-structures and h: A — B a function. The
following are equivalent:

(1) h is an embedding.
(2) h preserves and reflects all atomic formulas.
(3) h preserves all literals.

Proof. The equivalence of (2) and (3) follows from Remark Reflecting
atomic formulas is equivalent to preserving negated atomic formulas.

Assume h preserves and reflects all atomic formulas. Since h preserves all
atomic formulas, it is a homomorphism by Lemma Since h reflects atomic
formulas of the form x = y, it is injective. Since h reflects atomic formulas of
the form R(z1,...,z,) with R and n-ary relation symbol, it reflects relation
symbols.

Now suppose h is an embedding. Since h is a homomorphism, it preserves
atomic formulas. Let ¢(x) be an atomic formula, let a € A*, and assume
B = o(h(a)). If ¢ is t; = tg, then tP(h(a)) = tF(h(a)), so by Lemma
h(t{(a)) = h(t5'(a)). Since h is injective, ti(a) = t4'(a), so A E ¢(a).

e

If ¢ is R(th..., , then (t] (h(a))7...,t£(h(a))) € RP. By Lemma
(tB(h(a)),...,tE(h(a))) = (h ( ( ), ., h(t2(a))), and since h reflects relation
symbols, (tf(a), L tMa)) € R4 so A |: p(a). O

2.3 Fragments and F-morphisms

Given a map between structures, once can ask the question of which formulas
it preserves and reflects. Conversely, given a set of formulas, one can focus on
maps preserving these formulas.

Definition 2.9. A fragment of first-order logic is a set F of L-formulas which
contains all atomic L-formulas and is closed under subformula and substitution
of terms for free variables.

Usually, we consider fragments that contain all atomic formulas and are
built recursively from these using specified formula-building operations. For
fragments of this form, the closure conditions will hold trivially.

Here are some examples of fragments:

e The atomic fragment (At) contains all atomic formulas.

e The literal fragment (Lit) contains all literals (atomic and negated
atomic formulas).

e The positive quantifier-free fragment (qf") contains formulas built
from At using A and V.

e The quantifier-free fragment (qf) contains formulas built from At using
A, V, and —.
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e The positive primitive fragment (pp) contains formulas built from At
using A and 3. In categorical logic, this is called the regular fragment.

e The positive existential fragment (37) contains formulas built from
At using A, V, and 3. In categorical logic, this is called the coherent
fragment.

e The existential fragment (3) contains formulas built from Lit using A,
V, and 3.

e The universal fragment (V) contains formulas built from Lit using A,
V, and V.

e The elementary fragment (FO) is the set of all first-order formulas.

Given a fragment F, let 3(F) be the closure of F under the formula-building
operations of A, V, and 3. So, for example, the positive existential fragment is
3(At), while the existential fragment is 3(Lit). Similarly, let V(F) be the closure
of F under the formula-building operations of A, V, and V. We then define a
heirarchy of fragments stratifying FO by quantifier complexity:

I
Lu

(Lit)

3
A2 (th)

I
<

Fpt1 = 3(Vy) for all n
V1 = V(3,) for all n.

Our convention above is that when we close a fragment under A, we include
T (the empty conjunction), and when we close a fragment under V, we include
L (the empty disjunction).

Often, we only care about membership in a fragment up to logical equiva-
lence.

Definition 2.10. Two L-formulas ¢(z) and ¢ (z) in the same context are log-
ically equivalent if A = ¢(a) if and only if A = ¢(a) for all L-structures A
and all a € A”.

It is a classical result from propositional logic that every quantifier-free for-
mula is logically equivalent to one in disjunctive normal form: \/;_; AT"; @i j,
where ¢; ; is a literal for all 7 and j. It follows that, up to equivalence, we could
have described the quantifier-free fragment as the closure of Lit under A and V.
It also follows that, up to equivalence, we could have described the existential
fragment as the closure of qf (rather than Lit) under A, V, and 3, and similarly
for all the 3,, and V,,.

Existential formulas are frequently defined have the form Jy; ... Jy,e(x, ),
where @ is quantifier-free, i.e., the existential fragment is the closure of qf under
3. The justification for this is prenex normal form: every formula is equivalent
to one where all quantifiers are pulled to the front. But prenex normal form is
not valid over empty structures, so we have to use a different convention. For

16



example, when P is a proposition symbol, (3z T) V P is an existential formula,
but it is not logically equivalent to any formula in prenex normal form. Indeed,
(3x T)VP is true in an empty structure when P is true, but no formula beginning
with an existential quantifier is true in an empty structure.

Definition 2.11. Given a fragment F, an F-morphism is a function which
preserves all formulas in F.

Note that for any fragment JF, since we assume F contains all atomic for-
mulas, every F-morphism is a homomorphism by Proposition [2.7]

By Remark an F-morphism reflects all negations of formulas in F. If F
is closed under — (up to equivalence), then a F-morphism both preserves and
reflects all formulas in F.

It follows from Proposition that the At-morphisms are exactly the ho-
momorphism, and it follows from Proposition that the Lit-morphisms are
exactly the embeddings.

We call an FO-morphism an elementary embedding. At this point, it is
not clear that any non-trivial elementary embeddings exist! However, there is
one kind of morphism that preserves all structure.

Definition 2.12. An isomorphism is a homomorphism h: A — B such that
there exists an inverse homomorphism h=': B — A. We write A = B when A
and B are isomorphic, i.e., when there exists an isomorphism A — B.

It is a good exercise to prove the following:

(a) A homomorphism h: A — B is an isomorphism if and only if it is a surjective
embedding.

(b) Every isomorphism is an elementary embedding.

It turns out that if a function preserves F-formulas, then it preserves some
others for free.

Theorem 2.13. Let h: A — B be an F-morphism. Then h is an I(F)-
morphism.

Proof. Let p(x) be a formula in 3(F). We prove that h preserves ¢ by induction
on ¢. Let a € A%, and assume A |= ¢(a).

In the base case, ¢ € F. Then h preserves ¢ by hypothesis.

If o is T or L, then h preserves ¢ trivially.

Suppose ¢ is YA x. Then A 1 (a) and A = x(a). By induction, h preserves
¢ and x, so B = 9(h(a)) and B = x(h(a)), and thus B = ¢(h(a)).

Suppose @ is ¥V x. Then A = ¢ (a) or A = x(a). By induction, h preserves
¥ and x, so B = ¥(h(a)) or B = x(h(a)), and thus B |= ¢(h(a)).

Suppose ¢ is Jy(x,y). Then there is some b € A such that A = ¢¥(a,b).
By induction, h preserves v, so B = 1(h(a),h(b)). Thus B = Iy (h(a),y),
ie., B E p(h(a)). O
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As a consequence of the theorem, all homomorphisms preserve the positive
existential fragment 37 and all embeddings preserve the existential fragment 3.

Remark 2.14. By De Morgan’s Laws, the negation of a universal formula is
logically equivalent to an existential formula and vice versa. Since embeddings
preserve all existential formulas, embeddings reflect all negated existential for-
mulas, and hence reflect all universal formulas.

The quantifier-free fragment is contained (up to equivalence) in both the
existential and universal fragments, so embeddings both preserve and reflect all
quantifier-free formulas.

Example 2.15. Consider the structure (Z; <) and the map h: Z — Z given by
n +— 2n. This is an embedding: it is injective, and a < b if and only if 2a < 2b.

Let o(x,y) be the formula 3z (z < z < y). (¢ < y < z is shorthand for
x < zAz < y.) This is an existential formula. It is preserved by h, since if there
is some ¢ such that a < ¢ < b, then there is some ¢’ such that 2a < ¢ < 2b. For
example, we can take ¢’ = 2c. On the other hand, ¢ is not reflected by h. For
example, Z = ¢(h(1),h(2)), since 2 < 3 < 4, but Z £~ ¢(1,2).

Example 2.16. In Laroup = {-,€,” ' }, the group axioms are all given by uni-
versal sentences (e.g., Vz (x-e =z Ae-x = z)). It follows that if G is a group
and H C G is a substructure, then H is a group, since the axioms are reflected
by the inclusion embedding.

If we tried to axiomatize groups in the language £ = {-}, we would have to
use axioms with existential quantifiers that are not reflected to substructures
(e.g., 2V (z -2z = x Az-2 = x)). And indeed, there are L-substructures of
groups which are not groups, like (N;+) C (Z; +).

Let G be a group, and let H be a subgroup of G. The formula z -y =
y - © expressing that two elements commute is preserved and reflected by the
inclusion embedding: two elements commute in H if and only if they commute
in G. The formula Vy(x -y = y - ) defining the center is reflected by the
inclusion embedding, but not preserved: Z(H) need not be contained in Z(G),
but Z(G) N H C Z(H). Finally, the universal sentence VaVy (z -y = y - x)
is reflected by the inclusion embedding: this just says that a subgroup of an
abelian group is abelian.

2.4 Diagrams

Given an L-structure A and a subset C' C A, let £(C') be the language obtained
from £ by adding a new constant symbol for every element ¢ € C. When there
is no chance for confusion, we will also denote the constant symbol by c. We
view A as an £(C) structure in the obvious way, with ¢4 = ¢. Often we do not
distinguish notationally between A as a L-structure and as a L(C)-structure,
but when we need to we will denote the £(C)-structure by Ac.

When £ C L' are languages and A is an L'-structure, we write A|. for the
reduct of A to the language £, obtained by forgetting about the interpretations
of the symbols in £\ L'
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Example 2.17. For any C C A, A¢|. = A.

Example 2.18. Let LA, = {0,+, —} be the language of abelian groups, and
let Lring = {0,1,+, —, -} be the language of rings. If R is a ring, the reduct R|.
is the underlying abelian group of R.

Suppose C' is a subset of a structure A. Given a formula ¢(z) and an assign-
ment ¢ € C*, we will denote by ¢(c¢) the £(C)-sentence obtained by substituting
for each variable x; appearing in ¢(z) the constant symbol ¢; corresponding to
the element if C' assigned to ;.

For any fragment F, the the F-diagram of C in A, denoted Diag? (C), is
the set of all £L(C')-sentences ¢(c) such that ¢(z) € F and A |= ¢(c).

When F is the atomic fragment, Diagﬁt(C) is called the positive diagram
and denoted Diag}; (C'). When F is the literal fragment, Diagi®(C) is just called
the diagram and denoted Diag,(C). When F is the elementary fragment,
DiagiO(C) is called the elementary diagram. We drop the subscript A when
it is clear from context.

Proposition 2.19. Let A be an L-structure, and let B be a L(A)-structure.
Then B = Diag” (A) if and only if the function h: A — B given by a — o is
an F-morphism A — B| ..

Proof. For any formula ¢(z) in F, we have that h preserves ¢(z) if and only if
for all a € A%, if A |= ¢(a), then B = ¢(a). Equivalently, if ¢(a) € Diag” (A),
then B = ¢(a).

Now h is an F-morphism if and only if it preserves all formulas in F. As we
have just shown, this is equivalent to the condition that for all p(a) € Diag” (A),
B = ¢(a), i.e., B |= Diag” (A). 0

The significance of Proposition [2.19is that we can turn the problem of find-
ing some F-morphism from a structure A to another structure with certain
properties into the problem of finding a model for some £(A) theory, namely an
appropriate diagram. We can build homomorphisms using Diag™ (A), embed-
dings using Diag(A), and elementary embeddings using Diagpa (4).
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3 Horn theories and initial models

3.1 Free, initial, and terminal structures

Many examples of L-structures come from mathematical practice. If we are
interested in groups, or rings, or modules, we may decide on an appropriate
language £, axiomatize them by an L-theory 7', and consider these objects as
models of T

But if we are interested in an arbitrary theory T, where do we get models
of T?7 How do we know there are any at all? In fact there may not be, since
T might be inconsistent. But an insight of mathematical logic is that we can
often build models of T directly from the syntax of 7.

As a first example of what I mean, I will show how to build L-structures
(without worrying about satisfying any theory T') from terms.

Let x be a variable context. Recall that we denote by Term, the set of all
L-terms in context x. We make Term, into an L-structure, called the term
algebra in context z, as follows:

e For each n-ary function symbol f € £ and t4,...,t, € Term,,

Frme(ty, .. tn) = f(tr,. .. ty) € Termy,.

e For each relation symbol R € £, RT™= = &,

There is a function x — Term,, mapping each variable in x to its corre-
sponding term. Viewing this function as a variable assignment, the variables in
x are assigned to themselves, so we also denote this assignment by x. It is easy
to prove by induction that for any term t € Term,, t ™= (z) = t.

Now let ¢(x) be an atomic formula. If ¢ is t; = ta, then Term, | ¢(x) if
and only if 177 (z) = t3°"™ (z) if and only if t; = to. If @ is R(t1,...,t,),
then Term, £ ¢(z) (since RTe™= = &),

The motivation for interpreting every relation symbol as the empty relation
is to make it as easy as possible to define homomorphisms out of the term
algebra. We want Term,, to satisfy as few atomic formulas as possible.

Proposition 3.1. The term algebra Term,, is the free L-structure on the set x.
That is, for every L-structure A and every function a: x — A, there is a unique
homomorphism eval, : Term, — A such that eval, oz = a.

Proof. Tt is straightforward to prove directly that eval, () = t*(a) is the desired
homomorphisms, but it is slicker to apply Proposition Since every element
t € Term, is the evaluation ™™= (z), we have (z) = Term,, i.e., = is a set of
generators for Term,.

Now a: © — A is a partial function Term, — A. As we noted above, if p(z)
is an atomic formula such that Term, = ¢(x), then ¢ has the form ¢ = ¢, and
automatically A = ¢(a). Thus a preserves atomic formulas and extends to a
unique homomorphism eval, : Term, — A, defined by eval, () = t4(a). O
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Corollary 3.2. For any language L, the term algebra Termg in the empty
context is an initial L-structure. That is, it admits a unique homomorphism to
every other L-structure.

Proof. For any L-structure A, there is a unique function *: @ — A, which
extends to a unique homomorphism Termg — A. O

A term in the empty context (i.e., containing no variables) is called a closed
term. Note that if £ has no constant symbols, then there are no closed terms,
and Termg is an empty structure.

Of course, if we have an L-theory T in mind, the initial £-structure Termg
will typically fail to be a model of T'. For example, the initial Lgyoup-structure
has distinct elements e, e-e, e™! - ((e-e)~! - e), etc. If we want to construct an
initial model of the theory of groups, we need to collapse these distinct terms to
be a single element {e}. This is what we will do in the next subsection. First,
though, let’s note that there is also a terminal L-structure.

Let 1 be the structure with a single element {x}, defined as follows:

e For each n-ary function symbol f € £, f1(x,...,*) = x.
e For each n-ary relation symbol R € £, R' = 1" = {(x,...,%)}.

For each term t¢(x), there is a unique assignment *: x — 1, and we have
t1(¥) = * (the term must evaluate to some element, and this is the only one).

For each atomic formula o(z), if ¢ is t; = t, then t1(a) = x = t1(a), so
1 E ¢(a). And if ¢ is R(t1,...,tn), then 1 | p(a), since R* = 1". So 1
satisfies every atomic formula in every variable assignment.

Proposition 3.3. The trivial structure 1 is the terminal L-structure. That is,
for every L-structure A, there is a unique homomorphism A — 1.

Proof. Tt is straightforward to prove directly that the unique function *: A — 1
is a homomorphism. We can also apply Proposition as we noted above, 1
satisfies every atomic formula in every variable assignment, so * preserves all
atomic formulas and therefore is a homomorphism. O

3.2 Horn theories

A sequent is an expression of the form ¢ k. 1, where z is a finite variable
context and ¢ and ¢ are formulas in context z. Given an L-structure A, we
define A |= (¢ F, 9) to mean that for all assignments a € A%, if A = ¢p(a), then
A E ¢(a). Equivalently, ¢(A) C (A).

In full first-order logic, the sequent ¢ I, 1 has the same content as the
sentence Vx (¢ — 1) (where Vz is shorthand for the block of universal quantifiers
quantifying over all the variables in z). But in a fragment F of first-order logic
that lacks an equivalent of — (i.e., lacks — or V) or V, the sequent may not be
equivalent to any sentence. And we still may want to assert that one F-definable
set is always contained in another.
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Given a fragment F of first-order logic, we define an F-sequent to be an
expression of the form ¢ F, 1, where ¢ and @ are both in F. By default, an
F-theory is a set of F-sequents.

We now focus on the A fragment of first-order logic, whose formulas are
conjunctions of atomic formulas (including the empty conjunction T). A A-
sequent has the form

(pl/\.../\gpmlfmwl/\.../\wn

where each ¢; and v; is an atomic formula. Note that the single sequent above
has the same content as the following n sequents, taken together:

901/\"'/\90771'_1’(/}1

LA Nom Fa Yn

(and if n = 0, the sequent @1 A -+ A ¢y, b, T has no content — it is trivially
satisfied in every structure).

For this reason, it is traditional to restrict attention to A-sequents in which
the right-hand-side consists of a single atomic formula. Such a sequent is called
a Horn clause. We will call a set of Horn clauses (i.e., a A-theory) a Horn
theory.

In many sources, what I call Horn clauses are called “strict Horn clauses”. 1
will explain the reason for this later. You will often see Horn clauses presented
in the form Vz ((¢1 A -+ A @,) — ) where each ¢; and ¢ is atomic, or, worse,
Va (p1 V- Vom) where exactly one of the ¢; is atomic and the rest are negated
atomic. I think these presentations make the notion seem ad hoc, obscuring
the fact that Horn clauses are really the natural notion of an axiom in the
A-fragment of first-order logic.

In a Horn clause, the left-hand-side is allowed to be the empty conjunction
T. A Horn clause of the form T F, 1 has the same content as the universally
quantified atomic formula Vz . We call it an atomic axiom, and in the case
when v is an equation t; = t, we call it an equational axiom. The field
of universal algebra is primarily concerned with equational theories, i.e., those
axiomatized by equational axioms. We usually write atomic axioms as F, 1,
omitting the T.

Example 3.4. In Lgroup, the theory of groups is an equational theory:

F{x,y,z} (xy)'z:x(yz)
FayT-e=2x

Fimye-T=x
}—{w}x'xflze

F {2} zl.z=e
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Similarly, the theories of rings and of R-modules are equational theories in the
appropriate languages.

The theory of torsion-free groups (those with no non-identity elements of
finite order) is not equational, but it is a Horn theory, obtained by adding to
the equational theory of groups the following infinite schema of axioms, one for
each n > 1:

" =ebr=e

Similarly, the theory of reduced rings (those with no non-zero nilpotent
elements) is not equational, but it is a Horn theory, obtained by adding to the
equational theory of rings the following infinite schema of axioms, one for each
n > 1:

" =0 |—{x} =0

In fact, it is sufficient to add the single axiom
2 _ —
zc=0 F{I} xz=0.

Indeed, if R satisfies this latter axiom, we can prove by induction on n > 1 that
if x = 0, then x = 0. The base case n = 2 is assumed. Suppose n > 0 and
2" = 0. Then (2" 1)2 = 2™(2"~2) = 0, so by our axiom 2"~ ! = 0, and by
induction = 0.

The theories of integral domains and of fields are not even Horn theories.
However, they can be axiomatized in the positive quantifier-free fragment qf
and in the positive existential fragment 3T, respectively. The theory of integral
domains extends the equational theory of commutative rings by two further
axioms.

OlegJ_
z-yYy=0Fgpyr=0Vy=0

The theory of fields existends the equational theory of commutative rings by
two further axioms.

Ozllng_
Thimae=0VIy(z-y=1).

The terminal L-structure 1 is a model of every Horn L-theory. Indeed, since
1 satisfies all atomic formulas in all variable assignments, every Horn clause
A, @i b ¢ is trivially satisfied in 1.

In light of Example 1 is the trivial group and the zero ring. But the
theories of integral domains and fields do not admit 1 as a model, since 1 fails
to satisfy 0 = 1 kg L. This proves the assertion that these theories do not
admit Horn axiomatizations.

Example 3.5. In Lg0:q = {<}, the class of (strict) posets does not admit a
Horn axiomatization. Indeed, the Lgo q-structure 1 is not a strict poset, since
* < * in this structure.
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However, in the language Lorq = {<}, we can axiomatize partial orders by
a Horn theory:

xSyAySZF{w,y,z}mSZ
r<YANYy<zThipaT=y.

The class of linear orders cannot be axiomatized by a Horn theory, even in
the language Lorq. We need an additional qf "-axiom:

}_{x,y} (x < y) \ (y < :C)

3.3 Initial models of Horn theories

The immediate relevance of Horn theories for us is that they are the broad-
est context in which terminal and initial models are guaranteed to exist. We
have already seen the terminal structure 1 is a model of every Horn theory T,
and therefore is the terminal model of T. The initial models are much more
interesting.

Definition 3.6. Let A be a set of atomic sentences. We say A is diagram-
matic if it satisfies the following closure conditions:

(1) For every term ¢, t =¢ € A.

2) For all terms ¢t and ¢/, if t =¢ € A, then ¢/ =t € A.

(2)
(3) For all terms ¢y, to, and t3, if t; =to € A and to = t3 € A, thenty = t3 € A.
(4)

For every n-ary function symbol f € £ and all terms ¢4, ..., t, and ¢},... ¢,

ift; =t € Aforall 1 <i<mn,then f(t1,...,tn) = f(t},...,1,) € A.

(5) For every n-ary relation symbol R € £ and all terms ¢1,...,¢, and t},..., ¢,

y Y

ift;=t; € Aforalll <i<nand R(t1,...,t,) € A, then R(¢},...,t,) € A.

Let T be a Horn theory. We say A is T-diagrammatic if it additionally
satisfies:

(6) For every Horn clause A._, ¢; b, 9, and every assignment ¢ € Termg, of
a closed term to each variable in x, if p;(t) € A for all 1 < i < n, then
P(t) € A. Here ¢;(t) is the atomic sentence obtained by substituting for
the variables in x the corresponding terms in t.

Lemma 3.7. Suppose A is a diagrammatic set of atomic sentences. Then there
exists a structure Ma with (@) = M such that A = Diag}; (@). Moreover, if
A is T-diagrammatic, then Ma = T.

Proof. We define a relation ~a on Termg by t1 ~a to if and only if ¢ = t5 € A.
By closure conditions (1), (2), and (3), ~a is an equivalence relation. We write
[t] for the equivalence class of term ¢. Let Ma = Termg /~.

We now turn Ma into an L-structure as follows:
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e For each n-ary function symbol f € L,
(], [ta)) = [F (o t)]
e For each n-ary relation symbol R € L,

RMa = {([t1],...,[tn]) € MZ | R(t1,...,t,) € A}.

By closure conditions (4) and (5), these functions and relations are well-defined.

It is easy to show by induction that for every closed term ¢, t™2 = [t]. Since
every element of Ma is the evaluation of some closed term, Ma = ().

For an atomic sentence of the form t; = t2, we have t; = t5 € A if and only
if [t1] = [t2] if and only if #}" =}’ if and only if t; = t, € Diag}; (@)

For an atomic sentence of the form R(t1,...,t,), we have R(t1,...,t,) € A
if and only if ([t1],..., [tn]) € R~ if and only if R(ty,...,t,) € Diagy, ().

Thus A = Diag&A (). Tt remains to show that Ma = T, assuming A is
T-diagrammatic.

Let A, ¢i Fo» ¢ be a Horn clause in 7. Assuming z = {z1,...,2n},
let ([t1],...,[tm]) € MX and assume Ma = A, @i([t1],...,[tm]). Since for
each 1 < i < n, Ma | @i([t1],...,[tm]), the atomic sentence @;(t1,...,tm)
is true in Ma. Thus ¢;(t1,...,t,) € A. By the T-diagrammatic condition,
Y(t1,...,tn) € A, s0 Ma = ¢([t], ..., [t,]). We have shown Ma = Al; @i Fa
¥, s0 Ma ET. O

Lemma 3.8. For any structure M, A = Diag},(2) is diagrammatic. Moreover,
if M =T, then A is T-diagrammatic.

Proof. Tt is clear that A is diagrammatic. Assuming M = T, we verify (6). Let
Al i o ¥ be a Horn clause in T', ¢t € Termg,, and ¢;(t) € Aforall1 <i < n.
Then M = ¢;(tM) for all 1 < i < n, and therefore M = A]_; ¢;(t™). Since
MET, MEyp(tM), so y(t) € A. O

Lemma 3.9. Let T be a Horn theory. Then there is a least T-diagrammatic set
of atomic sentences, Ar. Moreover, Ap = UTOCfinT Ar,. That is, if 6 € Ar,
then there is a finite subset Ty C T such that § EiATo.

Proof. We just need to take the least set of atomic sentences closed under con-
ditions (1)—(6). Precisely, let Ag = @, and given A,,, let A,,11 be A,, together
with all atomic sentences required by conditions (1)—(6). For example (condition
2),ift =t € A,, then we put ¢’ = ¢ in A, ;1. For another example (condition
6), if Ai; @i o ¢ is a Horn clause in T and ¢;(t) € A, for all 1 <4 < n, then
we put ¥ (t) in A,y1. Then we let Ap =, oy An.

Since each of the closure conditions (1)—(6) have the form “if some finite
number of atomic sentences is in A, then some other atomic sentence is in A”,
it is easy to see that Ar is T-diagrammatic. Indeed, the finitely many sentences
will be in Ay for some sufficiently large N, and then the resulting sentence
will be in Ay41. If A’ is another T-diagrammatic set of atomic sentences, then
clearly Ag € A’, and by induction A,, € A’ for all n, so Ay C A/.
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Now suppose § € Ap. Then there is some least n such that § € A,. We
prove by induction on n that § € Ar, for some finite Ty C T. Since § ¢ A, _1,
it must have been added to A,, because of one of the closure conditions (1)—(6).
Then there are finitely many d1,...,d; € A,_1 which witnessed the addition
of § to A,. For each §;, by induction there is some finite 7% C T such that
0; € Api. Let Ty = Ule T?, and if § was added because of closure condition
(6) due to some horn clause C € T, also add C' to Tp.

Now since each d; € Ari, d1,...,0, € Ap,. Since Ap, is T-diagrammatic
(and contains clause C, if we are in case (6)), we must have § € A, as well. O

Theorem 3.10. Let T be a Horn theory. Then T has an initial model Mt (i.e.,
My ET and if N =T, then there is a unique homomorphism Mp — N ).

Proof. Let A be the least T-diagrammatic set of atomic sentences by Lemma/[3.9
Let My = Ma,. from Lemma Then My = (&) and Ap = Diag&T(Z).

Let N = T. By Lemma Diag} (9) is T-diagrammatic, so Diag;\r/[T (9) =
Ar C Diag}(@). It follows that the unique function @ — N preserves atomic
formulas and hence extends to a unique homomorphism M — N by Proposi-

tion 271 O

Corollary 3.11. Let T be a Horn theory. For an atomic sentence §, the fol-
lowing are equivalent:

(1) 6 € Ar.

(2) My 6.

(3) T=6.

(4) There is some finite subset Ty C T such that Ty = 0.

Proof. (1) < (2): Since My = Ma,., we have DiagLT (@) = Ap. Thus § € Ap
if and only if My |= 4.

(2) = (3): Suppose My =6 and N |= T is arbitrary. Since My is the initial
model of T, there is a unique homomorphism h: My — N. Since h preserves
atomic sentences, N = 6. Thus T = 0.

(3) = (2): T = ¢ means every model of T satisfies §. Since My = T,
My = 6.

(3) = (4): Suppose T |= 6. By the equivalence of (1) and (3), § € Ar. By
Lemma there is some finite subset 7p such that § € Ap,. By the equivalence
of (1) and (3) again, Ty = 0.

(4) = (3): If To C T and Ty |= 0, then for any M such that M = T, also
M Ty, so M = 6. O

The equivalence of (3) and (4) in Corollary is our first manifestation
of the compactness theorem. We will deduce the full compactness theorem for
first-order logic by bootstrapping from this version for atomic sentences relative
to Horn theories.
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One can view our work above as providing a complete proof system for
deriving atomic sentences from Horn theories. It has the following proof rules:

o =1 ty =tg,t2 =13

t=t t1 =to t1 =t3

to=t, ety =t
Pt tn) = f(trr it
ty =1ty tn =t,, R(t1,...,tn)

f € L an n-ary function symbol

R € L an n-ary relation symbol

R(ty,....t)
@1(t17...,tn),"'(pm(tl,...7t”) m
i eT
Yty ... tn) Ny 03 Fa ¥

3.4 Models presented by generators and relations

In algebra, it is common to present a structure by generators and relations. For
example, the dihedral group D,, can be presented as

(o,7| 0" =e, 7 =e,70 =0 7).

We can view this presentation as a set of constant symbols C, together with a
set A of atomic Lgroup(C)-sentences.

The group G so presented can be defined by a universal property. For any
other group H together with a map h: C' — H such that the images of C' in H
satisfy the relations in A, there is a unique homomorphism »’: G — H extending
h. Since we can view the map h: C — H as an expansion of the group H to
an Laroup (C)-structure, we can rephrase this in our model-theoretic language:
For any Lgroup(C)-structure H = Tgroup U A, there is a unique Lgroup(C)-
homomorphism G — H. That is, G is the initial model of the theory Troup UA.

It may seem awkward that TGroup U A consists of two kinds of things: Horn
(in fact, equational) axioms and atomic sentences. But recall that any atomic
sentence 0 has the same content as the sequent kg §, which is an atomic axiom
in the empty context.

Making this all more precise: Given a Horn theory T in the language L, a
set of new constant symbols C, and a set of atomic £(C')-sentences A, let T'(A)
be the Horn theory

TU{Fzd|deA}.

The model presented by generators C' and relations A is the initial model
My (), which exists by Theorem 13.10

Note that the proof of Lemma |3.9[can be easily adapted to show that for any
set A of atomic sentences, there is a smallest T-diagrammatic set containing A.
But this is just the same as the minimal T'(A)-diagrammatic set. The additional
closure conditions from the atomic axioms kg ¢ in T(A) amount to the same
thing as requiring a T'(A)-diagrammatic set to contain A.

27



Example 3.12. Consider the Horn theory of posets in Lo,q = {<}. Suppose
we have a presentation by generators and relations (C, A). For simplicity, let’s
assume that ¢ = ¢’ ¢ A when ¢ and ¢’ are distinct constants. Then A amounts
to a binary relation R on C' (with c¢R¢’ if and only if ¢ < ¢/ € A). Closing up to
the diagram of Mp(a) is equivalent to taking the reflexive and transitive closure
of this R to obtain a preorder <, and then passing to the poset obtained as a
quotient by the equivalence relation ~ defined by ¢ ~ ¢’ iff ¢ < ¢ and ¢/ < c.

What is the cardinality of the model M7 a)? We cannot hope to provide a
precise formula: even in the case of the theory of groups, it is an undecidable
problem whether the initial model of a given finite set of atomic sentences A is
the trivial group. However, we can easily provide an (infinite) upper bound.

Remark 3.13. Note that for any language £, a closed L-term is a finite se-
quence of symbols from £ (possibly together with finitely many other symbols
like parentheses and commas). The cardinality of the set of such finite sequences
is bounded above by max(Rg, |L£|). Since every element of Mr is named by a
closed term, |Mr| < max(Rq, |L]).

Since T(A) expands the language by a new set of constant symbols C, we
have [L£(C)| = |£| + [C] < max(No, |£],C), so [Mpa)| < max(Ro,|L],[|C]). For
example, a finitely generated group is always at most countably infinite, and
a group with a generating set of size x (an infinite cardinal) has cardinality at
most K.

3.5 Horn theories with constraints

We now extend our scope very slightly by adding the contradictory formula | to
the A-fragment. This allows us to form sequents of the form 1 F, ¢ (which we
ignore, since they are trivially satisfied by every structure) and A!_; ¢; b, L.
We call a sequent of the latter form a constraint clause. A theory in this
fragment is called a Horn theory with constraints. Other sources have the
convention that constraint clauses are also Horn clauses, while Horn clauses
without L are called “strict Horn clauses”.

Note that we have M = (A}, ;i F» L) if and only if there is no assignment
a € M* satisfying A\;_; ¢i. So constraint clauses forbid certain configurations
from occurring in their models.

Unlike Horn theories, which are guaranteed to have models, Horn theories
with constraints may be inconsistent. For example, the contradictory constraint
clause T g L has no models. Less trivially, Taroup U{2 -2 = e ;3 L} has no
models, since every group has an element which squares to the identity (namely
e itself).

Theorem 3.14 (Compactness for Horn theories with constraints). Let T be a
Horn theory with constraints. Suppose that whenever Ty C T contains finitely
many Horn clauses and exactly one constraint clause, Ty has a model. Then
T has a model. In fact, the initial model of the set of Horn clauses in T is an
initial model of T.
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Proof. Write T = Ty U T¢, where Ty consists of the Horn clauses in T and
Tc consists of the constraint clauses in 7. Let M be the initial model of Tx.
Toward a contradiction, assume M [~ T. Then there is some constraint clause
C € T¢ such that M = C. Write C as A, ¢; b» L. Then there is some
a € M* such that M = (A, ¢i) (a). Since M = (&), there exists t € Termg,
such that a = tM. Then for all 1 <i < n, M | ¢;(t). By Corollary for
all 1 < i < n, there is a finite subtheory T® C Ty such that T* = ¢;(t).

Let Ty = {C}UU;_, T*. Then Ty contains finitely many Horn clauses and
exactly one constraint clause. By our hypothesis, Ty has a model N = Tp.
Since N = T" for all 1 < i < n, we have N = ¢;(t) for all 1 < i < n, so
N E (A, i) V), contradicting N = C.

Thus M is a model of T. For any other N |= T, we have N | Ty, so there
is a unique homomorphism M — N. Thus M is an initial model of T O

As an immediate corollary, we get a version of the Lowenheim—Skolem the-
orem in this context. This corollary implies that for any class of algebraic
structures which is Horn-axiomatizable in a countable language, any infinite set
can be the domain of a structure in the class.

Corollary 3.15 (Léwenheim—Skolem for Horn theories). Let T be a Horn the-
ory, and assume that T has a model M with |M| > 2. Then for every infinite
cardinal k > |L|, T has a model of cardinality k.

Proof. Given an infinite cardinal x, let C be a set of new constant symbols
of cardinality . Let T be the following Horn theory with constraints in the
language L(C):

TUu{c=dtgL]c#cd inC}

Suppose Ty € T” is a subset containing finitely many Horn clauses and
exactly one constraint clause. This constraint clause is ¢ # ¢’ for some distinct
c and ¢’ in C. We can expand M to a model of Ty by interpreting ¢ and ¢’ as
distinct elements of M and interpreting the rest of the constant symbols in C'
arbitrarily. Let Mp be the initial model of T when viewed as an £(C')-theory.
By Remark 3.13] [Mr| < max(Ro, |£],|C|) = k. By Theorem Mr E T,
so the interpretations of the constants in C' are distinct in My, and |Mrp| > k.
Thus |Mt| = k, and clearly Mr|, = T, as desired. O

29



4 Existential theories and e.c. models

4.1 Direct limits

In the previous section, we constructed initial models for Horn theories. One
can think of these models as “minimalist” in the sense that the only things that
happen in them (in the sense of the elements that exist and the atomic formulas
they satisfy) are what is forced to happen by the theory. We will now turn to
constructing existentially closed models, which are “maximalist”: in a sense,
everything that could happen does happen in these models.

We will build these models as direct limits. The direct limit construction
(which in category theory is called the directed colimit) involves pasting together
a family of structured indexed by a directed set.

Definition 4.1. A directed set is a non-empty poset (I, <) with the property
that for all 4, j € I, there exists k € I with ¢ <k and j < k.

For example, any non-empty linear order is a directed set (we can take
k = max(4,)). Another example is the set of all finite subsets of a non-empty
set, ordered by C (we can take k =i U j).

Definition 4.2. Let (I, <) be a directed set. A directed family indexed by
T is a family of L-structures (M;);cs together with a family of homomorphisms
fij: M; = M for all 4 < j in I, such that

e Foralliel, fii ZldMT
e Foralli <j<kel, firofij= fir

In categorical language, a directed family is a functor from the poset (I, <)
(viewed as a category) to the category of L-structures and homomorphisms,
and the direct limit is the colimit of this diagram. It will be useful to have a
concrete description of the elements of the direct limit, so we give an explicit
construction rather than a category-theoretic characterization.

Given a directed family ((M;)ies, (fij)i<j), we define the direct limit lim M;.
First, let M, = [ |,c; M;, the disjoint union of all structures in the family. We
define a relation ~ on M,: given a € M; and b € M;, a ~ b if and only if there
exists k € I with ¢ < k and j < k such that fiz(a) = fjr(b). It is clear that ~
is reflexive and symmetric, so we check transitivity.

Suppose a1 € M;,, as € M;,, and a3 € M,, with a1 ~ a2 and as ~ as.
Then there exist jl,jg € I with i1 < jl, 19 < jl, 19 < jQ, and i3 < jg such that
fivin(@1) = fizi(a2) and fi,j, (a2) = fizj,(as). By directedness, we can pick
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k € I with j; <k and jo < k. Now

fir(ar) = fin(fivji(a1))

= fik(fizji (a2))

= fisk(az)

= szk(fw]z( ))

= szk(flsjz( ))
(

= fisx(asz),

SO ay ~ as.

The domain of the direct limit lim M; is M, /~, whose elements have the
form [a] with a € M,. For each i € I, there is a function g;: M; — lim M;; given
by gi(a) = [a].

Given a tuple b = (b1,...,b,) from lim M;, a representative of b is a tuple
a=(ai,...,a,) from some fixed M; such that [a;] = b; for all 1 < j < n, i.e,
such that g;(a) = b. If @ is a representative of b, we write b = [a]. Remember
that this notation implies that a lives in some fixed M;.

Lemma 4.3. Every tuple b = (by,...,b,) from lim M; has a representative.
Moreover, if a = (a1,...,a,) from M; and o' = (a},...,al) from M; are both
representatives of b, then there exists k € I with i < k and i’ < k such that

fir(a) = fir(a').

Proof. For each 1 < j < n, b; = [¢;] for some ¢; € M;,. By directedness, there
exists k € I with ¢; < kforalll1 <j<n (when n = 0, we use the fact that
I is non-empty). Let aj = fi;r(cj). Then f; i (a;) = fi;x(c;), so a; ~ c;, and

b; = [¢;] = [a;] for all 1 < j <n. Thus a = (a1,...,a,) is a representative of b.
Now suppose a = (ay,...,a,) from M; and o' = (a},...,a)) from M, are
both representatives of b. For each 1 < j < n, [a;] = b = [a}], s0 a; ~ a.

Thus there exists k; with ¢ < k; and i' < k; such that fi, (a;) = fix,(a}). By
directedness, there exists k € I with k; < k for all 1 < j < n. Now for each
s fik(aj) = fr;u(fir; (a5)) = fi;u(firk,; (a})) = fir(a)). So fix(a) = fir(a’), as
desired. O

Similarly, for a finite variable context x, if b € (lim M;)*, a representative
of bis a € M? for some i such that g;(a) =b, i.e., b = g; oa, and in this case we
write b = [a]. Lemma applies just as well to finite variable assignments as
it does to finite tuples. We can rephrase Lemma by writing that for finite
x, (lim M;)” is in natural bijection with lim (M).

‘We make ligMi into an L-structure as follows:

e For each n-ary function symbol f € £ and any n-tuple b in ligMi such

that b = [a] with a in M;, f23Mi(b) = [fMi(a)).

e For each m-ary relation symbol R € £ and any n-tuple b in ligMi, b e
R M if and only if b has a representative a in some M; such that a € RM:.
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We only need to check that the interpretations of the function symbols are
well-defined. By Lemma b has some representative a, so the definition
makes sense. For well-definedness, suppose a in M; and o’ in M, are both
representatives for b. Then by Lemma [{.3] there is some k € I with i < k
and i’ < k such that f;r(a) = fix(a). Since these maps are homomorphisms,
we have fix(f*i(a)) = fM(fir(a)) = fM(fin(a)) = fin(fM(a')). Thus
[FMer (a)] = [fM:(a)], and f23 M is well-defined.

Lemma 4.4. For all i € I, the map gi: M; — lim M; by gi(a) = [a] is a
homomorphism, and for alli < j in I, gj o fij = g;.

Proof. Directly from the definition. For each n-ary function symbol f, since a is
a representative of gi(a), g(f*(a)) = [fM(a)] = /=™ (la]) = f= ™ (gi()).
And for each n-ary relation symbol R, if a € R, then since a is a representative
for g;(a), gi(a) € R Mi

Given ¢ < j in I and a € M;, we have f;;(fi;(a)) = fij(a), so [a] = [fij(a)],
Le., gi(a) = g;(fij(a)). O

Recall that the positive existential fragment 3 is the smallest fragment
containing all atomic formulas and closed under A, V, and 3. We proved (Theo-
rem that homomorphisms preserve all 37-formulas. We will now see that
3+ formulas are reflected in direct limits, in a certain sense.

Lemma 4.5. Let (M;);c; be a directed family with direct limit M = @Mz
Let p(x) be an I*-formula, and let b € M*. Then M = ¢(b) if and only if
there exists i € I and a representative a € M7 of b such that M; = ¢(a).

Proof. One direction is clear: If M; = ¢(a), then since g; is a homomorphism
and g;(a) = b, M |= ¢(b) by Theorem [2.13]

We prove the converse by induction on (.

Suppose ¢ is atomic of the form ¢; = t5. Pick any representative a € M}
of b. Since M [ ¢(b), tM(gi(a)) = t}(gi(a)). Since g; is a homomorphism,
[tMi(a)] = [t3"(a)]. Thus there exists i < j € I such that f;;(t1"(a)) =
fi; (3 (a)). Since fi; is a homomorphism, ¢ (fi;(a)) = t3" (fi;(a)). Thus
M; = ¢(fij(a)). Since b = gi(a) = g;(fij(a)), fij(a) is a representative of b.

Now suppose ¢ is atomic of the form R(t,...,t,). Pick any representative
a € MF of b. Let ¢ be the tuple (t(b),...,tM(b)). Since g; is a homomorphism,
the tuple d = (t2(a), ..., ti(a)) is a representative of c.

Since ¢ € RM | there is also a representative d’ of ¢ in some M; such that d’ €
RMi, By Lemma there exists k € I with ¢ < k and j < k such that f;x(d) =
fir(d’). Call this tuple e. Since fj; is a homomorphism, e = f;;(d’) € RM*.
And since f;j, is a homomorphism, e = f;r(d) = (£ (fix(a)), ..., tM (fir(a))).
It follows that My = ¢(fix(a)), and since f;(a) is a representative of b in My,
we are done.

When ¢ is T or L, we can pick any ¢ € I and any representative a € M.

Suppose ¢ is Y A x. If M = ¢(b), then M E ¢(b) and M = x(b). By
induction we can pick representatives a € M and o’ € M} such that M; = ¢(a)
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and M; = x(a’). By Lemma [£.3] we can pick j € I with i < j and ¢/ < j
such that f;j(a) = fi;(a’). Call this assignment c. Since f;; and fi/; are
homomorphisms, M; = ¥(c) A x(c), and since ¢ is a representative of b in Mj,
we are done.

Suppose ¢ is PV x. If M = ¢(b), then M = ¢ (b) or M |= x(b). In the first
case, by induction we can pick a representative a € M7 such that M; = ¥(a).
Then M; = ¢(a), and we are done. The second case is similar.

Finally, suppose ¢ is Jy 1. If M = (b), then there exists b’ € M such that
M = 9(b,b'). By induction, we can pick a representative (a,a’) € M;"Y such
that M; = ¢(a,a’). Thus M; = ¢(a), and we are done. O

As usual for our fragments, an IT-theory is a set of sequents of the form
© k4 1, where ¢ and 1 are 3*-formulas in context x.

Theorem 4.6. Let T be an It -theory. Given a directed family (M;);cr of
models of T, we have lim M; ET.

Proof. Assume each M; is a model of T, and let M = hﬂMl Let o, ¢ be a
sequent in T. To show M = ¢ b, ¢, let b € M®, and assume M [ ¢(b). By
Lemma [4.5] there exists i € I and a € M{ with g;(a) = b such that M; |= ¢(a).
Since M; =T, M; = ¢ (a). Now since g; is a homomorphism, by Theorem
M = ¥(b). O

This theorems shows that all the classes of structures considered in Sec-
tion are closed under direct limits (groups, torsion-free groups, R-modules,
rings, reduced rings, integral domains, and fields, as well as posets and linear
orders, both in their strict and non-strict formulations).

4.2 Positively existentially closed structures

We have seen that homomorphisms preserve 37-formulas. So if f: M — N is a
homomorphism and a € M®, f(a) satisfies all the 3"-formulas that a does, and
possibly more. We now define the structures M which are maximal from this
perspective, in the sense that any 3*-formula that could be satisfied by f(a) for
some homomorphism f is already satisfied by a.

Definition 4.7. Let K be a class of L-structures (usually the class of models
of a theory T). We say that a structure M € K is positively existentially
closed (or 3*-closed, or PEC) in K, if for every homomorphism f: M — N
with N € K, f reflects 3T-formulas.

Example 4.8. In the language Lgorqa = {<}, a PEC linear order (L, <) must
be:

e Nonempty. We can always find a non-empty linear order L’ with L C L'.
The inclusion map reflects the 3*-sentence 3z T.
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e Unbounded above. For any a € L, we can always find a linear order L’
with L C L’ such that L’ contains a new element greater than a. The
inclusion map reflects the 3T-formula Jy (y > z), so a is not a greatest
element in L.

e Unbounded below, similarly.

e Dense. For any a < b in L, we can always find a linear order L' with
L C L' such that L’ contains a new element strictly between a and b. The
inclusion map reflects the 3* formula 3z (z < 2 Az < y), so L contains an
element strictly between a and b.

In fact, a linear order is PEC if and only if it is dense with no greatest or least
element (e.g. (Q,<) and (R, <) are PEC linear orders). We will justify this
claim later.

In the language Lo,4 = {<}, a PEC linear order (L, <) has only one element.
Indeed, L admits a homomorphism f: L — 1, which reflects the formula = = y.
Since f(a) = f(b) for all a,b € L, we have a = b.

Example 4.9. A PEC ring is trivial. Indeed, since every ring R admits a
homomorphism f to the zero ring Z, and Z = 0 = 1, a PEC ring must satisfy
0=1.

However, I claim that a commutative ring which is PEC in the class of non-
zero rings is an algebraically closed field. Suppose R is PEC in the class of
non-zero rings. Let M C R be a maximal ideal, and let g: R — R/M be the
quotient homomorphism. Let p(x) be the 37 formula x = 0V Jy (x -y = 1).
Then for any a € R, R/M E ¢(a), so R = ¢(a). Thur R is a field. Now for
any non-constant polynomial p € R[z], we can embed R in a field K containing
a root of p (e.g., K = R[z]/(q), where ¢ is an irreducible factor of p). Since
K =3z p(x) =0, R = 3zp(x) =0, so R is algebraically closed.

In fact, every algebraically closed field is PEC in the class of non-trivial
rings. We will justify this claim later.

Theorem 4.10. Let T be an 3+ -theory. For any M =T, there exists a homo-
morphism f: M — N where N is PEC in the class of models of T.

First, we prove that any model M admits a homomorphism to a model N
which satisfies the PEC property, but only for assignments in the image of M.

Lemma 4.11. Let T be an I*-theory. For any M = T, there exists a ho-
momorphism f: M — N, where N |= T and has the following property: for
any homomorphism g: N — N’ with N' = T, any 3" -formula ¢(z), and any
a€M?®, if N'|= ¢(g(f(a)), then N |= o(f(a)).

Proof. For some cardinal k, enumerate as (¢q(aq))a<x the set of all p(a), where
() is an It-formula and a € M™.

We build a s-indexed directed family (My)a<, of models of T by transfinite
recursion on k.

Base case: Let My = M and foo = idpy, -
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Inductive step: Given M,, if there exists some N |= T and a homomorphism
h: My — N such that N = ©a(h(foa(aa))), let Moy = N and foaq1) = h
Otherwise, if there is no such pair (N, h), set Mqoy1 = My and fo(aq1) = iday, -
Now set fiat1)(at1) = idm, ., and for all B < a, set fgai1) = fa(a+1) © [Ba-
Then (Mg)s<a+1 is a directed family of models of T'.

Limit step: Suppose 7 < k is a limit ordinal. By recursion we have con-
structed (My)a<~, a directed family of models of T. Let M, = lim M. By
Theorem M, ET. Let f,, = ida,, and for all & <7, let foy = ga, the
canonical homomorphism to the direct limit. Then (Mg )<~ is again a directed
family of models of T'.

Finally, let N = M, and f = fo.. Suppose g: N — N’ is a homomorphism
with N’ = T" and N’ = p(g(f(a))) for some 3T -formula p(x) and some a € M?.
Then ¢(a) is pq(ay) for some a < k.

Note that go f = go for = (9 fax) © foas 80 b = go for: My — N is
a homomorphism such that N’ = ¢o(h(foa(as))). Because of the existence
of the pair (N’,h), we must have Moy1 = @a(fa(at1)(foa(aa))). Since the
homomorphism f(,41), preserves I*-formulas, and fta+1)k © faa+1) © foa =
fox = f, we have N |= p(f(a)), as desired. O

Proof of Theorem[}.10. Suppose M |= T, an 3*-theory. We build an w-indexed
directed family (M, )<, of models of T' by recursion.

Base case: Let My = M and foo = id s, -

Inductive step: Given M, let M, 1 | T and fam+1): Mp — Mpy1 be the
model and homomorphism provided by Lemma Now let fint1)(nt1) =
idps, ., and for all m < n, let fi, (1) = fums1) © fmn-

Having constructed the directed family (M, )n<w, let N = lign(Mn),Kw, and
let f = gg, the canonical map into the direct limit. By Theorem NET.
It remains to show that N is PEC.

Suppose h: N — N’ is a homomorphism and N’ = T. Let ¢(z) be an 3*-
formula, let a € N*, and assume N’ = ¢(h(a)). By a has a representative
a’ € M for some n < w. We can factor g, = gni1 © frmt1), 50 h(a) =
h(gn(a’)) = h(gnt1(fam+1)(a’))). By the partial PEC property of M, 1, since
N' = o(h(gn+1)(frums1)(@’))) and hogyi1: My 1 — N’ is a homomorphism to
a model of T', we have M1 = ©(fnm+1)(a’)). And since the homomorphism
gn+1 preserves the 3t-formula ¢, we have N = (a), as desired. O

4.3 Compactness for 3"-theories

We begin with a “normal form” lemma for the 3T-fragment. A positive primi-
tive (p.p.) formula is one of the form 3y A, ¢i(x,y), where each ¢; is atomic.
Here y is a finite set of variables, possibly empty (so a conjunction of atomic
formulas is p.p.).

Lemma 4.12. Every 3T -formula is logically equivalent to a disjunction of p.p.
formulas.

Proof. Let ¢ be an 3*T-formula. We proceed by induction.
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If  is atomic, it is a singleton disjunction of the empty quantification of a
singleton conjunction of atomic formulas.

If pis L, it is the empty disjunction of p.p. formulas.

If ¢ is T, it is the singleton disjunction of the empty quantification of the
empty conjunction of atomic formulas.

Suppose @ is ¥ V x. By induction, we may assume v and x are disjunctions
of p.p. formulas. Then ¢ is too.

Suppose @ is P A x. By induction, we may assume v and x are disjunctions
of p.p. formulas. Distributing the A over the disjunctions, ¢ is equivalent to a
disjunction of formulas, each of which is the conjunction of two p.p. formulas.
Up to renaming bound variables, we may assume the quantified variables in each
of the p.p. formulas are disjoint. Now when y and z are disjoint, (Jy 01) A (32 62)
is equivalent to Jy3z (61 A 02), which is p.p. when 67 and 6, are conjunctions of
atomic formulas.

Suppose ¢ is Jy . By induction, we may assume 9 is a disjunction of p.p.
formulas, \/!"_, ¢;. Now 3y /!, ¢; is equivalent to \/"_; Jy ¢;, and each formula
Jy1; is p.p. O

Let T be an 3*-theory. We say that a sequent S is finitely entailed by T
if there is some finite Ty C T such that Ty = S.

Lemma 4.13. Let T be an 31 -theory. Let T be the set of all constraint clauses
that are finitely entailed by T. If M is PEC in the class of models of T¢, then
MET.

Proof. Toshow M = T, it suffices to show that M = (¢ -, v) for every sequent
(pFe ) €T

Let a € M*, and assume for contradiction that M = ¢(a) and M B ¢(a).
By Lemma[4.12] ¢ is equivalent in M to a disjunction of p.p. formulas. Since a
satisfies ¢ in M, a satisfies one of the disjuncts Jy ¢’ in M. Then there exists
b € MY such that M = ¢'(a,b). Note that ¢'(z,y) is a conjunction of atomic
formulas, and ¢’ b5, ¢ is a validity (true in every structure).

Similarly, by Lemma 1 is equivalent to \/]_, 32" ¢;(z, 2%), where each 1);
is a conjunction of atomic formulas. Then for all 1 <i < n, M £ 3z';(a, 2°).

Fixing an 4, let ¢’ be a set of new constant symbols, one for each variable in
2%, and consider the £(M U c*)-theory

% = T UDiag" (M) U {¢i(a, ¢')}.

Note that ¥; is a Horn theory with constraints (in fact, it is equivalent to a set
of atomic axioms, together with a set of constraint clauses). If ¥; has a model
N, then because N |= Diag™ (M), there is a homomorphism h: M — N
with h(m) = m¥, and since N |= ¥;(a,c’), N = 328 ;(h(a), z%) (with (¢')N
witnessing the existential quantifiers). Since N = T and M is a PEC model
of Tc, M = 32%4;(a, %), contradiction.

Thus ¥; has no model. By Theorem there is a finite set A; C Diag™ (M)
and a constraint clause C; € T¢ such that {C;}UA; U {t;(a, ')} has no model.

36

Lecture 10:
10/8



Since C is finitely entailed by T, there is some finite 7; C T such that T; = C,
so T; U A; U {9;(a, )} has no model.

Having found A; and 7; for each 1 < ¢ < n, let A = [J/_, A;, and let
T = {p s v} UU, Ti Can T. Note that A Cg, Diagt(M). Write the
conjunction of the atomic sentences in A as d(a, b, m), separating the constants
naming the elements of the assignments a and b from the others in m.

Let C* be the constraint clause ¢'(z,y) A d(x,y,w) Fgyw L. T claim that
T* | C*, so that C* is finitely entailed by T. Let M’ = T*, let o/,b/,m’ €
(M")*¥* and suppose M’ |= ¢'(a’,b") Ad(a’,b',m’). Since ¢’ b5, ¢ is a validity
and M’ | (p b4 ¥), we have M’ |= ¢(a’). Then there is some 1 < i < n such
that M’ |= 32" 4;(a’, 2°), so there is ¢’ € (M')*" such that M’ = v;(a’, ).

Since M’ |= T*, M' |= T;. Interpreting the constant symbols a,b,c’, m as
a' v',c,m’ in M, M' = 1);(a,c?), and since M’ |= 6(a’,b',m’), M’ = A;. This
contradicts the fact that T; U A; U {¢;(a, c¢*)} has no model.

Thus T* | C*, and hence C* € To. But M E ¢'(a,b) A d(a,b,m), so
M W= C*, contradicting M |= Teo. Thus M |= (¢ b4 9), as desired. O

Theorem 4.14. Let T be an 3T -theory. Assume that every finite subtheory
To €T has a model. Then T has a model.

Proof. Let T be the set of all constraint clauses that are finitely entailed by T'.
I claim that T has a model. By compactness for Horn theories with constraints
(Theorem 7 it suffices to show that every single constraint clause C' € T¢
has a model. Since C is finitely entailed by T', there is some finite Ty C T such
that Ty = C. By our hypothesis, Ty has a model, and thus C has a model M.
[In fact, the initial model of the Horn part of T is a model of T. Since the
Horn part is empty, the closed term algebra is a model of T¢.]

Now T¢ is an 3T-theory, so by Theorem Tc has a PEC model M. By

Lemma MET. O

Corollary 4.15. Let T be an 3T -theory, and let S = ¢ F, ¥ be an 3T -sequent.
Then S is finitely entailed by T if and only if S is entailed by T

Proof. 1f there exists Ty Cgn T such that Ty = S, then clearly T = S.
Conversely suppose T' = S. Let ¢ be a set of new constant symbols, one for
every variable in z, and consider the £(c)-theory T":

TU{T kg ¢(c),9(c) Fo L}

Then T’ has no model, since if M | T', then M = T, M = ¢(cM), and
M = (cM), contradicting T |= S.
By Theorem [4.14] there is a finite Ty C T such that

To U{T Fg ¢(c),d(c) Fo L}

has no model. It follows that Ty = ¢ b, 9. Indeed, if M = T and a € M® such
that M = ¢(a) but M = —p(a), then we can expand M to an L(c)-structure by
M =a, and M is a model of Ty U {T kg p(c),9(c) Fz L}, contradiction. [
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Corollary 4.16. Let T be an 3t -theory, and let Te be the set of all constraint
clauses entailed by T. If M is a PEC model of T, then M =T.

Proof. By Corollary Tc is equal to the set of constraint clauses finitely
entailed by 7. Then the result follows from Lemma [£.13] O

4.4 Morleyization

We now bootstrap our compactness theorem for 3*-theories up to arbitrary
first-order theories. This may seem like a heavy lift, but it turns out that the
full first-order fragment can be interpreted, in an appropriate sense, in the 37-
fragment. We give the construction in greater generality.

We say a fragment F is V-free if no formula in F contains the universal
quantifier V. For example, the literal fragment Lit and the existential fragment
3 are V-free. The elementary fragment FO is not V-free, but we can let FO* be
the set of all first-order formulas with no universal quantifiers. Every formula
in FO is logically equivalent to one in FO*, by rewriting V as —3—, so the V-free
fragment FO* is just as expressive as FO.

For the rest of the construction, we fix a V-free fragment F. Recall that
we assume fragments are closed under subformula and substitution of terms for
free variables.

Fix also a countable set of variables V' = {z,, | n € N}. Since every formula
in F mentions only finitely many variables, at the expense of renaming variables,
we can focus on formulas with variable contexts from V.

For each formula ¢(z) € F where z = {xg,...,2,_1} for some n, introduce
a new n-ary relation symbol R,. Let Lr = LU{R, | ¢(z) € F}.

For each such formula ¢(z) € F, we now introduce some new 3"-axioms in
the language Lz, depending on the form of ¢(z). In the recursion, we use the
fact that F is closed under subformula.

o If p is atomic: R, (z) s ¢ and ¢ b, R, (z).

o If pis T: Ty Ry(x).

o If pis L: Ry(x) b, L.

o If pisp Ax: Ry(z) Fy Ry(z) A Ry () and Ry (z) A Ry () Fz Ry(x).
o If pis VvV x: Ry(z) Fy Ry(z) V Ry (2) and Ry(z) V Ry () Fz Ry(x).
o If pis ~): Ry(x) A Ry(x) b, Land T 5 Ry(x) V Ry ().

o If pis Iy Ry(x) by Jy Ry(x,y) and Iy Ry (x,y) Fo Ry(x).

Let Tx be the set of axioms listed above, for every formula in F with variable
context x = {x,...,x,} for some n. Note that Tz is an I*-theory.
Given an F-theory T in £, let T be the 3T theory:

Tr U{Ry(x) o Ry (@) | ¢ e Y € T}
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Given an L-structure M, it is easy to prove by induction that for any M has
a unique expansion to a model M = Tr, in which RY = {a € M" | M = ¢(a)}.
Moreover, M |= T if and only if M = T.

Let F be a V-free fragment. We have seen above that there is a bijection
between L-structures M and L z-structures M which are models of Tr. Addi-
tionally, for a function h: M — N, his an F-morphism if and only if &: M- N
is a homomorphism. That is, we have an isomorphism of categories between the
category of L-structures and F-morphisms and the category of models of T'r
and homomorphisms. This allows us to lift our results about direct limits along
directed families with homomorphisms to directed families with stronger con-
necting maps.

o Let (M;);er be a directed family such that every map f;;: M; — M, is an
F-morphism. Let M = thl There is a corresponding directed family

(]\Z)ig. Since each ]\/4\1 E T, by Theorem thl E Trx. Since M
has a unique expansion to a model of Tz, thZ =M.

e The canonical map g;: Z\Z —~ Misa homomorphism by Lemma SO
gi: M; — M is an F-morphism.

e Let ¢(z) be an 37 (F)-formula, and let b € M*. Then ¢(z) translates to
an 3t-formula $(z) in Lx. We have M | ¢(b) if and only it M Eg(b) if

and only if there exists 4 E I and a representative a € M of b such that
M, E ¢(a) (by Lemma if and only if M; = ¢(a),.

e Let T be an 37 (F)-theory. We can translate T into an 3"-theory T in
Lr. Y M; =T forallie I, then M; =T foralli e I, so M =T (by
Theorem [4.6), and M = T.

For example, take F to be the literal fragment Lit, so F-morphisms are em-
beddings and 3% (F) is the existential fragment 3. Then given a directed family
with all connecting maps embeddings, each of the structures in the family em-
beds in the direct limit, and the direct limit preserves satisfaction of 3-theories.

For another example, take F to be the V-free fragment FO*, and note that
F-morphisms are elementary embeddings and 3+ (F) = FO*. Given a directed
family with all connecting maps elementary embeddings, each of the structures
in the family embeds elementarily in the direct limit, and the direct limit pre-
serves satisfaction of arbitrary first-order theories.

Example 4.17. We end with an example demonstrating the necessity of the
“V-free” condition in the construction above.

Consider the empty language £ = &, and the fragment F obtained by closing
the atomic formulas under universal quantifiers.

For each i € w, let A; = {a;0,a;1}, where the a;; are pairwise distinct. For
all i < g, let f;;: A; = A; be the constant map sending both elements of A; to
ajo. It is easy to check that the f;; are F-morphisms.
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The direct limit A = lim A; has a single point, since for any a;; and a;j
with 4 < 4’, we have f;y1y(aij) = fiqr41)(aij) = a@1y0. Then A satisfies
the F-sentence ¢: VaVy (z = y), but there is no i € w such that A; = ¢, so the
direct limit does not reflect F-formulas in the sense of Lemma

Similarly, each A; is a model of the F-sentence VaVy(z = y) k5 L, but A not
does satisfy this sentence. Thus the direct limit does not preserve F-theories in
the sense of Theorem [Z.6
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5 First-order compactness

5.1 The compactness theorem and some first consequences

Theorem 5.1 (Compactness theorem). Let T be a first-order theory. If every
finite subset of T has a model, then T has a model.

Proof. T has no model. We will show that a finite subset of 7" has no model.
Let FO* be the V-free fragment of first-order logic. Then we can rewrite
T to an equivalent FO*-theory T*. Since T has no model, the 3" -theory T*
has no model. By compactness for 3T-theories (Theorem [4.14 “ there is a finite
subset Ty C T+ such that Tp has no model. Then Ty C Th UTro = T1 for some
Ty Cen T, and T1 has no model. Then T; has no model (otherwise, if M = Ty,
then M E 1/“\1) But T} is equivalent to a finite subset of T, so we are done. [

We will see three kinds of applications of the compactness theorem in this
section: (1) building structures with specified properties, (2) showing the limi-
tations of first-order logic: that some classes of structures are not axiomatizable
and some sets and relations are not definable, and (3) transferring theorems
from finite cases to the general case.

Definition 5.2. A theory T is satisfiable if 7" has a model. A theory T is
complete if it is satisfiable, and for every sentence ¢, either T' = ¢ or T = —p.

Example 5.3. Let A be any structure. Then the complete theory of A is
Th(A) = {¢ an L-sentence | A = ¢}.

The name is justified, since for any sentence ¢, either A = ¢ or A = ¢. In the
first case, ¢ € Th(A), while in the second case A |= =, so = € Th(A).

Definition 5.4. Structure A and B are elementarily equivalent, written
A = B, if Th(A) = Th(B), i.e., for all sentences ¢, A |= ¢ if and only if B |= .

Elementarily equivalent structures are indistinguishable from the perspec-
tive of sentences of first-order logic. Note that if h: A — B is an elementary
embedding, then A = B, since h preserves and reflects the truth of all sentences.
In particular, isomorphic structures are elementarily equivalent.

Example 5.5. The language of arithmetic is Lain = {<,0, 1,4, x}. Consider
the Laritn-structure N = (N; <,0,1, 4+, x). The complete theory Th(N) is called
true arithmetic, and its model N is the standard model of arithmetic. Let’s
use compactness to show that Th(N) also has nonstandard models.

Let £ = Layith U {c}, where ¢ is a new constant symbol. For each n € N, let
7 be the term 1 +1+--- 4+ 1. Define T'= Th(N) U{c# 7 | n € N}.

By compactness, to show that T is satisfiable, it suffices to show that any
finite subset is satisfiable. For any finite subset Ty Cg, 1, pick some m € N
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such that (¢ # m) ¢ Ty. Then we can expand N to a model of T by interpreting
cas m.

Thus T has a model (N;<,0,1,+, X,c). This model contains standard
elements of the form 7V for all n € N, but it also contains the element ¢V,
which is not equal to any standard element. Since N is generated by @, and
N satisfies all atomic sentences true in N, there is a unique homomorphism
h:N—= N, nw— 7. But h is not surjective, since A is not in its image. It
follows that N is elementarily equivalent to N but not isomorphic to N.

Example 5.6. Let Lg sy be the language containing an n-ary function symbol
f for every function f: R™ — R (that includes a constant symbol r for every
r € R) and an n-ary relation symbol R for every subset R C R"™. We view R as
an Lg gy-structure in the obvious way.

Let £ = Lg gan U {e}, where € is a new constant symbol. Define

T=Th(R)U{e >0} U{e<r|reRso}.

By compactness, to show that T is satisfiable, it suffices to show that any finite
subset is satisfiable. For any finite subset Ty Cgy, T, there is a least positive real
number 7 such that ¢ < r is in Ty. Then we can expand R to a model of Ty by
interpreting ¢ as 3.

Thus T has a model R. Since every element of R is named by a constant
symbol in Lg rau, Th(R) is the elementary diagram of R, so there is an elemen-
tary embedding R — R, r — r*. But unlike R, R contains an element £® which
is infinitesimal: positive but smaller than every standard natural number.

It turns out that in models of T, naive calculus with infinitesimals becomes
meaningful. For example, if a function f: R — R is differentiable at a, then
f'(a) is the unique real number that differs by an infinitesimal quantity from the
evaluation of the term M in R (note that we can make this definition
without introducing the -0 definition of limit). This approach to calculus with
infinitesimals is called nonstandard analysis.

Recall that the four color theorem in graph theory says that every finite
planar graph admits a coloring by at most four colors. We show how to use
compactness to automatically lift this theorem to the case of infinite graphs.

Example 5.7. Let G be an infinite planar graph. Let £ = Lgraph(G) U{P; |
i < 4}, where the P; are four new unary relation symbols. Define T' to have the
following axioms:

e Diag, . (G).

o Vz \/,_, Pi(z).

o Vz A\ (Pi(z) A Pj(x)).

o VaVy (xEy — N\;cq ~(Pi(z) A Pi(y)).

i<j<4a
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A finite subset Ty C T contains only a finite subset of Diag(G). This subset
describes a finite graph Gg. Note that G is planar, since it is a subgraph of
G. By the four color theorem, Gy admits a coloring by at most four colors. We
can expand Gy to an L-structure by interpreting the constant symbols naming
elements of G\ Gq arbitrarily, and interpreting the P; as the colors. Then
Go = To.

By compactness, T has a model G’, which is a graph with a four col-
oring. Note that G'|z,,,, is not necessarily isomorphic to G. But since
G’ | Diagg,, . (G), there is an embedding h: G — G'[cg,,,,, s0 G’ has a
subgraph isomorphic to G. Restricting the colors to this subgraphs gives a four
coloring of G.

Finally, we show how compactness can be a tool for proving non-definability
results.

Example 5.8. The language Lgraph consists of a binary relation symbol E.
We will show that there is no first-order theory 7' such that G |= T if and only
if G is a connected graph.

Suppose for contradiction that such a theory T' exists. Let £ = Lgrapnh U
{¢,d}, where ¢ and d are two new constant symbols, and let 7/ =T U {¢, | n €
w}, where ¢q is the sentence (¢ # d), ¢ is the sentence —(cEd), and for n > 2,
n is the sentence expressing that there is no path of length n from ¢ to d:

n—2
_E|£L'1 . .E'.’En_l (CEI’l /\LEn_lEd/\ /\ J?iEfEi_;'_l) .

i=1

We will show that 7" is consistent. For every natural number n, let G,, be
a connected graph containing elements a,, and b, such that the length of the
shortest path from a,, to b, is n (for example, we can take G,, to consist of a
path from a, to b, of length n).

Now any finite subset of 7" is contained in T'U {¢}, | k¥ < n} for some large
enough n, and (Gp; E,a,,b,) E TU{px | K < n}. So by compactness, T” is
consistent.

Let (G; E,a,b) be a model of T. Since G =T, G is a connected graph, but
since (G; E, a,b) | ¢y, for all n, there is no path of any length from a to b. This
is a contradiction.

Example 5.9. We will show that there is no first-order formula ¢(x) in the
language La}, of abelian groups such that for every abelian group G, ¢(G) is
the torsion subgroup of G (the set of elements of finite order).

Suppose for contradiction that such a formula ¢(z) exists. Let £ = LapU{c},
where c is a new constant symbol, and let

T = Thy, U{p(c)} Ufne £ 0| n > 1,

where nc is shorthand for the term ¢+ --- +c.
———

n times
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For any finite subset Ty C T', pick m > 1 such that m is greater than all n
such that nc # 0 € Ty. Then the cyclic group C,, can be expanded to a model
of Ty by interpreting ¢ as a generator. Note that C,, = Tap and Cp, | ¢(c),
since every element of C), is torsion.

By compactness, T' has a model G. Since G |= Tap, G is an abelian group.
Since G' = ¢(c), ¢ is a torsion element of G. But since G' = nc # 0 for all
n > 1, ¢ does not have any finite order. This is a contradiction.

5.2 The Lowenheim—Skolem theorems

Echoing Corollary we can use compactness to build arbitrarily large ele-
mentary extensions of any infinite structure.

Theorem 5.10 (Upwards Lowenheim—Skolem). Suppose M is an infinite L-
structure and k is a cardinal. Then there is an elementary embedding M — N
with |[N| > k.

Proof. Recall that £(M) is the language obtained by adding a new constant
symbol to L for every element of M. Consider the language

L'=LM)U{cy| <k}
Let T be the L'-theory
Diag"® (M) U {co # cs | a < B < K}.
A finite subset Ty Cg, T is contained in the theory
Diag"® (M) U {ca, # Ca; |1 <i<j<n}

for some finitely many a1 < -+ < ay,, < k. Since M is infinite, we can pick n
distinct elements a;,...,a, € M. Then interpreting the constant co, as a;, M
itself is a model of T.

By compactness, T is satisfiable. Let N |= T. Then by Proposition [2.19}
the map a + a” is an elementary embedding M — N. And |N| > &, since the
elements (cY),<, are all distinct. O

As a consequence of Theorem if T is a theory with infinite models,
it has models of arbitrarily large cardinalities. What if we want a model of
cardinality exactly x for some infinite k? For this, we need a tool to find
elementary substructures.

Definition 5.11. A substructure M of N is an elementary substructure,
written M < N, if the inclusion map M — N is an elementary embedding.

The following is a criterion for a substructure to be elementary. The useful-
ness of this criterion comes from the fact that condition (2) only refers to truth
in the larger structure N — we never have to think about truth in M! But there
is also a difficulty in applying this criterion, namely that it quantifies over all
formulas ¢(z,y).

44



Theorem 5.12 (Tarski—Vaught Test). Suppose M is a substructure of N. The
following are equivalent:

(1) M < N.

(2) For every formula p(x,y) (where x is a finite set of variables and y is a
single variable) and every tuple a € M®, if N = Jyp(a,y), then there is
some element b € M such that N = ¢(a,b).

Proof. (1)=(2): Assume N E Jy(a,y), with a € M*. Since M < N, M E
Jy ¢(a,y). So there is some b € M such that M | ¢(a,b), and since M < N,
also N = ¢(a,b).

(2)=(1): We prove by induction on formulas ¢(x) that for all a € M?*,
M = p(a) if and only if N = ¢(a).

The base case, when ¢(z) is atomic, is handled by the fact that M is a
substructure of N. Then the inclusion M — N is an embedding, which preserves
and reflects atomic formulas.

The inductive steps for Boolean combinations are straightforward. So we
consider the case when ¢(z) is Jy ¥ (z,y).

Assume M | ¢(a). Then there is some b € M such that M = ¢ (a,b). By
induction N = ¥(a,b), so N | ¢(a).

Conversely, assume N | p(a), i.e. N = Jy¢(a,y). By (2), there is some
b € M such that N = ¢(a,b). By induction, M |= ¢(a,b), so M = ¢(a). O

Theorem 5.13 (Downwards Léwenheim—Skolem). Suppose M is a structure
and A C M. Then there is an elementary substructure N =< M such that
A C N and |N| < max(Ro, |[A], |£]).

Proof. We define a sequence (A;);c, of subsets of M by recursion. Let Ag = A.
Given A;, for every formula ¢(x,y) (where x is a tuple of variables and y
is a single variable) and every a € A¥, if M = Jyp(a,y), pick some element
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by(a,y) € M such that M = ¢(a,b). Define
Ai-{—l =A; U {bg;(a,y) | M ': Ely w(a,y), a < Af}
Finally, let N = J,.,, As.

I claim that N is a substructure of M, i.e., that N is L-closed. So suppose
f € L is an n-ary function symbol, and let a € N". Since a is a finite tuple,
there is some ¢ € w such that a € A?. Then M |= 3y (f(a) = y), so there is
some b € A;y1 C N such that M = (f(a) =b). Thus fM(a) =be N.

Next, we show that N < M using the Tarski-Vaught test, Theorem[5.12} So
suppose p(z,y) is a formula and a € N*, such that M |= 3y ¢(a,y). Then there
is some ¢ € w such that a € AY, and by construction there is some b € A;;1 C N
such that M |= ¢(a,b), as was to be shown.

It remains to bound the cardinality of N. Let x = max(Ro, |4]|, |L]). We
show by induction that |A4;| < & for all ¢ € w. In the base case, A9 = A, and
the inequality is clear. So we consider A;.;. For any formula ¢(x,y), where
x is a set of n variables, the set By ;) = {bpa,y) | M F Fyw(a,y),a € A7}
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has cardinality at most |A4;|™. This is equal to |4;| when A; is infinite, and it
is finite when A; is finite. So in either case, |By(s,,)| < max(]4;],Ro) < & by
induction, and since & is infinite.

Now the number of formulas ¢(z,y) is at most max(Ro, |£]) < &, so:

p(z,y

il =140 | Bow)

W(way)
< A + max(Ro, [£], k)
< K.
Finally, we have |N| = [{J,,, Ai] < max(Rg, x) = k. O

Theorem [5.13| was the source of Skolem’s “paradox”. In modern language:
ZFC set theory proves that there are uncountably infinite sets (like R and P(w)).
But if ZFC is consistent, then it has a countably infinite model. How can a
countably infinite model of set theory contain uncountably infinite sets? The
resolution of the paradox is that if M is a countable model of ZFC, then working
outside the model, we can put M in bijection with the real natural numbers.
But in M, there is no element of M which is a bijection between the element of
M called P(w) and the element of M called w.

Corollary 5.14. Let T be a theory with at least one infinite model, and suppose
k > max(Rg, |L|). Then T has a model of cardinality exactly k.

Proof. Let M be an infinite model of 7. By Theorem[5.10} there is an elementary
embedding M — M’ (so M' = T) with |[M'| > k.

If |M'| = k, we are done. Otherwise, max(Ro, |£|) < k < |M'|. Let A be an
arbitrary subset of M’ of cardinality . By Theorem there exists N < M’
(so N |=T) such that A C N and |N| < max(Ry, |4], |£]) = &, and since A C N,
also kK < |N|. Thus N is model of T of cardinality exactly x. O

Note that the Lowenheim—Skolem theorems do not guarantee existence of
models of cardinality £ when x < max(Xg, |£]). Model theory has very little to
say in general about models which are finite or smaller than the cardinality of
the language.

5.3 Partial types

A partial type (in context x) is a set of formulas in the same context z. We
say that a partial type ¥(x) is realized by a € M?*, written M [ X(a), if
M = ¢(a) for all p(x) € X(z). We say that X(x) is satisfiable relative to a
theory T if it is realized in some model M = T.

A complete type p(z) relative to a theory T is a satisfiable partial type such
that for every formula ¢(x) in context x, either p(z) € p(z), or ~p(z) € p(z).

For any M =T and any a € M*, we define tp(a) = {¢(z) | M E ¢(a)}.
Then tp(a), the complete type of a is a complete type in context x.
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Proposition 5.15 (Compactness for partial types). Let X(x) be a partial type
such that every finite subset ¥'(x) Cgn X(x) is satisfiable relative to T. Then
Y (x) is satisfiable relative to T.

Proof. Let L = L(c), where ¢ is a new set of constant symbols, one for every
variable in z. Let 7" be the L-theory T'U 3(c). By hypothesis, every finite
subset of T” is satisfiable: For any ¥'(x) Cay X(z), if N =T and N | ¥/(a),
then letting N’ be the expansion of N in which ¢V’ = a, we have N’ = TUY/(c).
By compactness, there exists M’ |= T". Letting a = ¢™’, we have M’ = T and
M E 3(a). O

We also want to consider types with parameters. Given a set A C M, we
can view a formula like (z,b), where b is a tuple from A, as an L(A)-formula.
A partial type over A is just a partial type in the language £(A).

Theorem 5.16. Suppose A C M and X(x) is a partial type over A. Then
Y (x) is finitely satisfiable in M if and only if it is realized in some elementary
extension of M.

Proof. Suppose 3(x) is finitely satisfiable in M. Then for every finite ¥'(z) C
Y(z), ¥'(x) is realized by some a € M*. Then X(z) is finitely satisfiable relative
to DiagF© (M), so by Proposition () is satisfiable relative to Diag"® (M).
Let N = Diag"®(M) and a € N* realize ¥. Since N }= Diag"® (M), there is
an elementary embedding M — N, and identifying M with its image in N, X
is realized in an elementary extension of M.

Conversely, suppose X(x) is realized by a € N* with M < N. Let ¥/ Cg,, 3,
and let 0 = Aycs . Then since N | o(a), N | Jro(x). Since o is an
L(A)-formula and A C M < N, we have M | Jzo(x). Letting b € M* with
M E o(b), b realizes ¥'(z) in M. So ¥ is finitely satisfiable in M. O

Definition 5.17. Let T be a theory. Partial types X(z) and ¥'(x) in the same
context x are T-equivalent if for all M =T and all a € M*, M |= X(a) if and
only if M |= ¥'(a). We extend the definition in the obvious way to formulas,
treating a formula ¢(x) as the partial type {o(z)}.

Lemma 5.18. Suppose X(x) is a partial type which is T-equivalent to a formula
p(x). Then there is a finite subset X' C X such that ¥/ is T-equivalent to .

Proof. Since ¥ and ¢ are T-equivalent, the partial type ZU{—¢} is not satisfiable
relative to T. By Proposition there is a finite X’ Cg,, 3 such that X' U{-p}
is not satisfiable relative to T'. 1 claim that ¥’ and ¢ are T-equivalent.

Let M =T and a € M*. If M |= ¢(a), then since ¢ and ¥ are equivalent,
M = X(a), so M = ¥'(a). Conversely, if M = ¥'(a), then since X' U {—¢p} is
not satisfiable relative to T, we must have M = ¢(a). O

5.4 Preservation results

We have already seen (Theorem [2.13|) that F-morphisms preserve all 3T (F)-
formulas and (Theorem that direct limits along F-morphisms preserve
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3T (F)-theories. Our goal in this section is to establish the converses to these
facts: if a formula is preserved by F-morphisms, it is equivalent to an 3% (F)-
formula, and if a theory is preserved by direct limits along F-morphisms, then
it is equivalent to an 3T (F)-theory.

We begin with a very useful amalgamation result. Recall that h: M --» N
is a partial F-morphism if the domain of h is A C M and for all F-formulas
p(z) and a € A", if M = ¢(a), then N | ¢(h(a)).

Theorem 5.19. Let h: M --+ N be a partial 37 (F)-morphism. Then there is
an elementary extension N < N' and a F-morphism g: M — N' extending h.

Proof. Let A C M be the domain of h. Consider the following £(M UN)-theory
T:
Diag” (M) U Diag"®(N)U{a =n|a € A, h(a) = n}.

It suffices to show that T is satisfiable. Indeed, if N’ }= T, then because N’ |=
Diag"© (), up to replacing N’ with an isomorphic model, N’ as an elementary
extension of N. And since N’ |= Diag” (M), there is an F-morphism g: M —
N’ defined by g(m) = m"'. Finally, for a € A, if h(a) = n, then N |= a = n,
so g(a) = a™" =n"" =n = h(a), and thus g extends h.

Let Ty € T be a finite subtheory. Let a be the finite set of elements of A
appearing in T, and let m be the finite set of elements of M \ A appearing in Tj.
Let ¥ (a,m) be the conjunction of the finitely many formulas from Diag” (M)
in Typ. Then M = ¢(a,m), so M | Jy)(a,y). Since h is an 3T (F)-morphism,
N = 3yy(h(a),y). Let n € N¥ be such that N |= ¢(h(a),n). Then interpreting
a” = h(a) and m" =n, N |= Ty. By compactness, T is satisfiable. O

Corollary 5.20. Let f: M — N and f': M — N’ be elementary embeddings.
Then there exist elementary embeddings g: N — M’ and ¢': N' — M’ such

that go f =g’ o f’.

Proof. Let h: N --» N’ be the partial map with domain f(M) C N, defined by
Rh(f(m)) = f'(m). Then h is a partial FO-morphism. Indeed, for all formulas
p(z) and a € f(M)*, writing a = f(m), if N | ¢(a), then N | ¢(f(m)), so
M [ ¢(m), and N' = o(f'(m)), so N' E ¢(h(a)). Since 37 (FO) = FO, by
Theorem there exists an elementary extension N’ < M’ and an elementary
embedding g: N — M’ extending h. Letting ¢’ be the elementary inclusion
map N’ — M’, this means that for all m € M, g(f(m)) = h(f(m)) = f'(m) =

g'(f'(m)),sogof=gof. O

Theorem 5.21. Let T be a theory and X(x) a partial type which is preserved
by all F-morphisms between models of T. Then X(x) is T-equivalent to a set of
3t (F)-formulas.

Proof. Let ¥'(z) be the set of all 3 (F)-formulas ¢(z) such that T U X(z) =
o(x). Then if M = T and a € M? realizes X(z), we have M = ¢(a) for all
p € ¥, s0 a realizes ¥/ ().
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Conversely, assume M =T and a € M*® realizes ¥/(z). Let
A(z) = {~p() | € I7(F) and M |~ p(a)}.

I claim that X(2) UA(z) is satisfiable relative to T'. If not, then by compactness,
there is a finite subset Ag C A such that ¥ U Ay is not satisfiable relative to
T. Let Ag = {~p; | 1 <i<n}. Then TUX(z) = Vi, ¢i(z), so Vi, pi(z) €
Y/(x). This contradicts the fact that M = ¢;(a) for all 1 <i <mn.

Now let N =T and b € N* realizing X(z) U A(x). If x(z) is an 3T (F)-
formula and N |= x(b), then =x(b) ¢ A, so M = x(a). Thus the partial function
h: N --» M mapping b to a is a partial 3% (F)-morphism. By Theorem [5.19)
there is an elementary extension M =< M’ and an F-morphism g: N — M’
extending g. In particular, g(b) = a. Since N |= X(b) and ¥ is preserved by
F-morphisms, M’ = X(a), and since M < M', M |= ¥(a), as desired. O

Corollary 5.22. Let TV be a theory which is preserved by all F-morphisms.
Then T' is equivalent to a set of 31 (F)-sentences.

Proof. Apply Theorem with T'= @ to T’, viewed as a partial type in the
empty context. O

Corollary 5.23. Let p(x) be a formula which is preserved by all F-morphisms
between models of T. Then p(x) is T-equivalent to an 3+ (F)-formula.

Proof. Apply Theorem [5.21] to the partial type {¢(z)}. We obtain that ¢(z) is
T-equivalent to a set X(z) of 37 (F)-formulas. Now by Lemmal[5.18] since $(x)
is T-equivalent to a formula ¢(x), there is a finite ¥’ Cg,, X which is equivalent
to ¢(x). Then p(x) is equivalent to the 37 (F)-formula A .y, 0. O

Definition 5.24. An F-immersion is an F-morphism which also reflects
3* (F)-formulas.

Let Diagfﬁ(f)(M) ={-p|lpd¢ DiagaJr(f)(M)}. Since reflecting all 31 (F)-
formulas is the same as preserving their negations, we can build an F-immersion
out of M by finding a model of Diag” (M) U Diagﬂﬂ}—)(M).

Theorem 5.25. Let T be a theory which is preserved by direct limits along
F-morphisms, in the sense that if (M;);cr is a directed family of models of T
with all connecting maps f;; are F-morphisms, then h%li =T. Then T is
equivalent to an 37 (F)-theory (i.e., a set of I+ (F)-sequents).

Proof. Let T' be the set of all 3% (F)-sequents S such that T = S. Then every
model of T is a model of T’. We must show the converse, that every model of

T’ is a model of T'.
Let M =T'. We build a diagram of the following shape:

M, < M, o M,
NN TN
No " N h
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such that:

e My = M and each M; =T".

Each N; = T.

Each e; is an elementary embedding.

Each f; is an F-immersion.

Each g; and each h; is an F-morphism.

The triangles commute: g; o f; = e; and f;11 0 g; = h;41 for all i.

In the base case, we let My =M = T".
Given M; =T', we build f;: M; — N; ET. Consider the £(M;)-theory:

T U Diag” (M;) U Diag™? F) (M)

If this theory is inconsistent, then there are finitely many ¢; € Diag” (M;) for
1 < j < n and finitely many —), € DiagﬂJr(}-)(Mi) for 1 < k < m such that

m

TU /\‘pjv/\_‘wk

j=1 k=1

is inconsistent. Let ¢ be the finite set of all constant symbols not in £ that are
mentioned in the ¢; and 1y, and let z be a set of variables corresponding to
the constant symbols in c. For any A =T and a € A%, if A = \j_, vi(a), then

AV NiZy ~¥r(a), so

n

TE | Nei) el ]
k=1

j=1

This is an 37 (F)-sequent, so it is in T7”. Since M; = T’, this contradicts the
fact that M = AJ_; w;(c) A= Vs, ¢i(c).

Letting N; be a model for the theory above, the map f;(m) = m
F-immersion, as desired.

Given M; and N; and the F-immersion f;: M; — N;, we build an elementary
extension M; < M;,; and a F-morphism g;: N; — M;,1. Note that since f;
is injective (since it reflects the F-formula z = y), it is a bijection onto its
range. Thus we can view f{l as a partial map N; --» M;. Since f; is a F-
immersion, fi_1 is a partial 37 (F)-morphism. By Theorem fi_1 extends
to an F-morphism g;: N; — M,;;1 for some elementary extension M; < M;1.

Now we define e; to be the elementary inclusion map M; — M;,1. The fact
that g; extends f; ' implies that for all m € M;, g;(fi(m)) = f; '(fi(m)) =m =
ei(m), so e; = g; o fi.

Ni ig an
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Finally, for ¢ > 0, we define h; = f; o g;_1. Since both f; and g;_; are
F-morphisms, so is h;.

Having build the diagram, let M = lim M; and N = hﬂNi. The homomor-
phisms f; induce a homomorphism M — N, and the homomorphisms g; induce
a homomorphism N — M, which are inverses. Thus M = N.

Since N; = T for all i, each h; is an F-morphism, and T is preserved by
direct limits along F-morphisms, N = T. Since M =2 N, M E T. And since
M is a direct limit of the M; along elementary embeddings, the canonical map
My — M is an elementary embedding. Thus My = T, as desired. O
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6 Model completeness

In this section, we apply the results of the previous sections with F = Lit, the
literal fragment, consisting of atomic and negated atomic formulas. Thus, F-
morphisms are embeddings, and 37 (F) is the existential fragment 3, built from
literals by 3, A, and V, immersions are embeddings that reflect 3-formulas, etc.

By Theorem [5.25] a first-order theory T is preserved by direct limits along
embeddings if and only if 7" is equivalent to a set of J-sequents. By syntac-
tic manipulations, any set of 3-sequents is equivalent to a set of V3-sentences
(sentences in the closure of the I-fragment under V, A, and V) and vice versa.
To avoid any ambiguity between 3-theories (in the sense of a set of 3-sequents)
and V3-theories (in the sense of a set of V3-sentences), we refer to such theories
as inductive theories (since their class of models are closed under inductive
limits, an alternate term for direct limits).

6.1 Characterizing model complete theories

One difficulty in doing model theory with arbitrary first-order theories is that
many concepts quantify over all formulas, and arbitrary first-order formulas
(with arbitrary quantifier-alternations) can be very complicated. For example,
to qualify as an elementary embedding, a function must preserve a lot of struc-
ture! It is much more convenient to work with model-complete theories, where
this complexity is reduced to a level that is much more manageable to check,
both for elementary embeddings and for definability.

Definition 6.1. A theory T is model complete if every embedding between
models of T is an elementary embedding.

Definition 6.2. Let K be a class of L-structures (usually the class of models of
a theory T'). We say that a structure M € K is existentially closed (or EC)
in K, if for every embedding f: M — N with N € K is an immersion (reflects
3-formulas).

Condition (6) in the following theorem is the reason for the name “model-
complete”.

Theorem 6.3. Let T be a theory. The following are equivalent:

(1) T is model complete.

(2) Every model of T is EC.

(8) Every 3-formula is T-equivalent to a V-formula.

(4) Ewvery formula is T-equivalent to a V-formula.

(5) Every formula is T-equivalent to an 3-formula.

(6) For every model M = T, the L(M)-theory T U Diag(M) is a complete
L(M)-theory.
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Proof. (1)=(2): Suppose M =T and h: M — N is an embedding with N |=T.
Let ¢ be an 3-formula. Since h is an elementary embedding by (1), h reflects
. Thus h is an immersion and M is an EC model of T'.

(2)=(3): Let ¢ be an I-formula. Every embedding between models of T
reflects ¢, and hence preserves —p. By Corollary —p is T-equivalent to an
F-formula, so ¢ is T-equivalent to a V-formula.

(3)=(4): Note since every F-formula is T-equivalent to a V-formula by (3),
taking negations, every V-formula is T-equivalent to an 3-formula. Let’s call
this statement (3’).

We prove by induction that every formula is T-equivalent to a V-formula.
The cases of atomic formulas and T and L are trivial, since these are V-formulas.
The inductive steps for V, A, and V are trivial, since the V-fragment is closed
under these operations.

Suppose ¢(z) is (x). By induction, we may assume that ¢(x) is a V-
formula. By (3’), ¥(z) is T-equivalent to an I-formula ¢’ (x), so ¢(x) is T-
equivalent to —)’(z), which is equivalent to a V-formula.

Suppose p(z) is Jy(x,y). By induction, we may assume that ¢ (z,y) is a
V-formula. By (3°), ¢(x,y) is T-equivalent to an 3-formula ¢’(z,y), so ¢(x) is
T-equivalent to Jy ¢’ (x,y), which is an I-formula. By (3), ¢(z) is T-equivalent
to a V-formula.

(4)=(5): For any formula ¢, = is equivalent to a V-formula v by (4), so ¢
is equivalent to —), which is equivalent to an 3-formula.

(5)=(1): Let h: M — N be an embedding between models of T. Let ¢
be an arbitrary formula. Since ¢ is T-equivalent to an I-formula by (5), ¢ is
preserved by h. So h is an elementary embedding.

(1)=(6): Let M = T. We would like to show that T' U Diag(M)
Diag"© (M), since Diagh®(M) is a complete L£(M)-theory. So let p(m) €
DiagFO(M ) (with the constant symbols m naming elements of M made ex-
plicit). Let N |= T U Diag(M). Then the natural embedding h: M — N is an
elementary embedding by (1), so it preserves ¢(x), and we have N = ¢(m). It
follows that T'U Diag(M) = ¢(m).

(6)=(1): Let h: M — N be an embedding between models of T. Then
N E T UDiag(M), where we interpret the constant symbols naming elements
of M as their images in N under h. Let ¢(z) be an arbitrary formula and
m € M?, and suppose M = ¢(m). Then since T'UDiag(M) is complete and M
is a model, T'U Diag(M) |= ¢(m). It follows that N = ¢(h(m)). Thus h is an
elementary embedding. O

Theorem 6.4. Let T' be a model complete theory. Then T is equivalent to an
inductive theory (hence has an axiomatization by 3-sequents or by V3-sentences).

Proof. By Theorem [5.25 it suffices to show that the class of models of T is
closed under direct limits along embeddings. Let (M;);er be a directed family
such that M; = T for all i € I and all connecting maps are embeddings. Since T'
is model complete, all connecting maps are elementary embeddings. But then,
picking any j € I, the map g;: M; — h_r)nMi is an elementary embedding, so
since M; =T, also lim M; =T. O

]



6.2 Quantifier elimination

How can we give examples of model complete theories? If we’re lucky, we might
be able to prove that a theory of interest eliminates quantifiers.

Definition 6.5. A theory T has quantifier elimination (or eliminates quan-
tifiers) if every formula is T-equivalent to a quantifier-free formula.

Example 6.6. Let T be the theory of fields. The formula Jy (xy = 1), express-
ing that z is invertible, is T-equivalent to the quantifier-free formula x # 0.
Similarly, the formula

JaTFbIecId(ax +bz=1Nay+bw=0Acx +dz=0Acy+ dw=0),

expressing that the matrix ( Z Z} ) is invertible, is T-equivalent to the quantifier-

free formula zw — yz # 0.

The formula ¢(a, b, ¢) defined by 3y (ay® + by + ¢ = 0) is not T-equivalent to
a quantifier-free formula. To see this, note for example that if h: R — C is the
inclusion embedding, h preserves and reflects all quantifier-free formulas. But
it does not reflect ¢, since R p= ¢(1,0,1), while C |= ¢(1,0,1).

However, if we include < in the language and move to the complete theory
of R, we have that ¢ is Th(R;0,1,+4, —, -, <)-equivalent to the quantifier-free
formula b% — 4ac > 0.

We begin with a useful structural criterion for a single formula to be equiv-
alent to a quantifier-free formula. Note that quantifier-free formulas are both
J-formulas and V-formulas, so they are both preserved and reflected by embed-
dings.

Theorem 6.7. Let T be a theory and p(z) a formula. The following are equiv-
alent:

(1) ¢ is T-equivalent to a quantifier-free formula.

uppose M an are models of T, A is any structure, and g: A —
2) S M and N dels of T, A i dg: A M
and h: A — N are embeddings. For all a € A*, if N = p(h(a)), then

M = ¢(g(a)).

(3) The same as (2), but with the extra requirement that a is a finite set of
generators for A.

Proof. (1)=(2): Suppose ¢ is T-equivalent to a quantifier-free formula ¢. Then
in the context of (2), since g and h preserve and reflect ¥, we have

N = ¢(h(a) = N | 9(h(a))
= AE ()

= M = (g(a))
= M E ¢(g(a))
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(2)=(3): Trivial.

(3)=(1): Let ¥ be the set of all quantifier-free formulas (z) such that
TU{p(z)} E ¢(x). Clearly T U{p(z)} E ¥(x). We will show that TU ¥ (z) &
{o(a)}.

Let M =T, and let a € M* be a realization of ¥U(x). Let A = (a)n, and
let g: A — M be the inclusion. We would like to find a model for the theory
T U Diagy(a) U {p(a)}.

Suppose for contradiction that this theory is not satisfiable. Then by com-
pactness, there is a finite subset which is unsatisfiable, so there is a finite
subset © Cg, Diag,,(a) such that T U © U {¢(a)} is not satisfiable. But
then T'U {e(a)} E ~ Ap(a)eo 0(a), so T U {p(z)} F Vi)ep 70(z), and thus
Vo(ayeo 70(x) € ¥. So M = Vy(,yep ~0(a), contradicting the fact that f(a) €
Diagy,(a) for all 6(a) € ©.

Thus there is a model N = T UDiag,,(a) U{¢(a)}. It follows that the map
a+— a¥ extends to an embedding h: A — N. Now since N = ¢(h(a)), by (3),
M = ¢(g(a)), and g(a) = a.

We have shown that the partial types {¢(x)} and ¥(z) are T-equivalent. By
Lemma there is a finite subset Uy Cg, ¥ such that {¢} is T-equivalent to
Wo. Then ¢(z) is T-equivalent to the quantifier-free formula A,y . O

Note that the proof of Theorem used the compactness theorem twice
(once by the application of Lemma Compactness is a fundamentally non-
constructive proof technique, so the proof doesn’t give us any information on
how to explicitly find the quantifier-free formula equivalent to ¢. In certain
circumstances, we can do better by giving an explicit algorithm for eliminating
quantifiers.

Next we note that to prove that 7" has quantifier elimination, we only have
to consider formulas of a particularly simple form. This is the analogue of the
result that a theory is model complete if and only if every 3-formula is equivalent
to a V-formula.

Definition 6.8. A primitive formula is one of the form Jy /\?=1 i, where y
is a single variable and each formula ¢; is literal.

Theorem 6.9. If every primitive formula is T-equivalent to a quantifier-free
formula, then T has quantifier elimination.

Proof. We prove by induction on the complexity of formulas that every formula
is T-equivalent to a quantifier-free formula. The cases of atomic formulas, T,
1, A, V, and — are clear, and a formula of the form Vy ¢ can be rewritten as
—3Jy -, so it suffices to handle the induction step for the existential quantifier.

So consider a formula ¢ of the form Jy. By induction, ¢ is T-equivalent
to a quantifier-free formula 6. Writing € in disjunctive normal form, ¢ is T-
equivalent to

Jy \//\%‘j )

i=1j=1
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where each ;; is literal. It follows that ¢ is T-equivalent to

n m

\/321 /\%‘j )

i=1 j=1

since existential quantifiers distribute over disjunctions. For fixed i, the formula
Jy (/\;11 <pij) is primitive, so by hypothesis it is T-equivalent to a quantifier-

free formula, and ¢ is T-equivalent to the disjunction of these n formulas. [
We can now give several tests for quantifier elimination.

Theorem 6.10. Let T be a theory. The following are equivalent:

(1) T has quantifier elimination.

(2) T is substructure complete: For any M =T and A C M a substructure,
the L(A)-theory T U Diag(A) is complete.

(8) Let M,N =T and A C M a substructure. Let f: A — N be an embed-
ding. Then there exists an elementary extension N < N’ and an embedding
g: M — N’ extending f.

(4) Let M,N =T and A C M a finitely generated substructure. Let f: A — N
be an embedding. Let b € M, and let B = (AU{b})rr. Then there exists an
elementary extension N < N' and an embedding g: B — N’ extending f.

(5) Suppose M and N are models of T, p(x) is a primitive formula, and a € M*
such that M |= p(a). Let A = {(a)np, and let f: A — N be an embedding.

Then N = (/(a)).

Proof. (1)=(2): Assume T has quantifier elimination, M |= T, and A C M.
To show that T"U Diag(A) is complete, it suffices to show that T'U Diag(A) =
Diag"©(A), since the latter is a complete £(A)-theory. Let o(a) € Diaght (A4),
and let N =T U Diag(A). We need to show N = ¢(a).

By quantifier elimination, ¢(x) is T-equivalent to a quantifier-free formula
Y(x). Since M = T and M = ¢(a), we have M |= v¢(a), and since 1 is
quantifier-free, A = ¢ (a).

Write (x) in disjunctive normal form as \/;Z) A7_, ¥ij(x). Then there is
some 1 < i < m such that A = A\, ¥i;(a), so {¢;;(a) | 1 < j < n} C Diag(A).
Thus N |= ¢;(a) forall 1 < j <n,so N = 9(a). Since N =T, also N = ¢(a),
as desired.

(2)=(3): Suppose T is substructure complete. Let M, N =T, let A C M be
a substructure, and let f: A — N be an embedding. Viewing f as a partial map
M --» N, Iclaim that f is a partial elementary map. Let ¢(z) be a formula and
a € A%, and suppose M = ¢(a). Since T'U Diag(A) is a complete L(A)-theory,
T UDiag(A) F p(a). Interpreting b™ = f(b) for all b€ A, N =T U Diag(A), so
N E olf(a).
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In particular, f is a partial 3-morphism, so by Theorem there exists
N < N’ and an embedding g: M — N’ extending f.

(3)=(4): Trivial, by restricting the g provided by (3) from M to B C M.

(4)=(5): Let M,N =T, ¢(x) a primitive formula, and a € M?* such that
M | ¢(a). Let A= {a)pm, and let f: A — N be an embedding.

Write ¢ as Jy¢(x,y), where ¢ is a conjunction of atomic formulas. Let
b € M such that M = 9(a,b). Let B = (AU {b})m. By (4), there exists
N = N’ and an embedding g: B — N’ extending f. Since v is quantifier-
free, B = 1(a,b), and since ¢ is an embedding, N’ = ¢(g(a),g(b)). Then
N’ = Jyi(g(a),y), and since N < N, N | ¢(g(a)). Since g extends f,
g(a) = f(a), and we are done.

(5)=(1): By Theorems and it suffices to show that if p(z) is a
primitive formula, M, N =T, A = (a) witha € A®, g: A— M and h: A > N
embeddings, and N = ¢(h(a)), then M E ¢(g(a)).

Let A’ = h(A) = (h(a))y. Let f = goh™t: A’ — M. Then f is an
embedding. By (5), since N |= ¢(h(a)), M = ¢(g(a)), as desired. O

Example 6.11. Let £ = @, and let T1,¢ be the theory of an infinite set. We
show that T7,¢ has quantifier elimination using condition (3) from Theorem

Let M and N be infinite sets and A C M. Let f: A — N be an embedding
(an injective function). By Lowenheim—Skolem, there exists N < N’ with |[N'| >
|M]. In particular, |N"\ f(4)] = |[N'| > |M| > |M \ A|. Picking an injective
function (M \ A) — (N’ \ f(A)), we can extend f to an injective function
g: M — N'. By Theorem m T has quantifier elimination.

On the other hand, the theory of arbitrary sets (the empty L-theory) fails
to have quantifier elimination — it is not even model complete. For example, the
inclusion embedding {0} — {0, 1} is not elementary, because it fails to preserve
the sentence VaVy (v = y).

Example 6.12. Let £ = {<}, and let DLO be the theory of non-empty dense
linear orders without endpoints. We show that DLO has quantifier elimination
using condition (4) from Theorem m

Let M and N be models of DLO and A C M a finitely generated sub-
structure. Then A is finite, and we can enumerate its elements in increas-
ing order: a; < az < --- < an. Let f: A - N be an embedding. Then
fla1) < flag) < --- < flap).

Let b € M, and let B = (AU {b})y = AU {b}. We will extend f to an
embedding g: B — N. If b € A, then we can take g = f. So assume b ¢ A.

Case 1: If b < ay, then since N has no least element, there exists b’ € N
with & < f(ay). Define g(b) =¥'.

Case 2: If b > a,,, then since N has no greatest element, there exists ¥’ € N
with ¥ > f(ay,). Define g(b) =¥'.

Case 3: Otherwise, there is some 1 < i < n such that a; < b < a;41. Since
f(a;) < f(a;4+1) and N is dense, there exists ' € N with f(a;) < b < f(a;+1).
Define g(b) =b'.

By Theorem [6.10, DLO has quantifier elimination.
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We will use condition (5) from Theorem to prove that the theory of
algebraically closed fields has quantifier elimination in the next section.

Proposition 6.13. Suppose T is a satisfiable theory with quantifier elimination.
The following are equivalent:

1. T is complete.
2. For any M\N =T, (@)m = (D) N

3. There is a structure A such that for any model M = T, there is an em-
bedding g: A — M.

Proof. (1)=(2): Let M, N = T. There is a unique map f: & — (&)y. Since
T is complete and M and N satisfy the atomic sentences, f extends to a
unique homomorphism g¢: (&) — (F)n. Similarly, we obtain a homomor-
phism h: (@)y — (). Since homomorphisms out of a structure generated
by @ are unique, go h and ho g are identity maps, so these homomorphisms are
inverses, and (@) = (D) N.

(2)=(3): Since T is satisfiable, it has a model M. Let A = (&);. For any
NET, A~ {(Z)n, so A embeds in N.

(3)=(1): Since T is satisfiable, it has a model M. Let ¢ be a sentence. Then
either M |= ¢ or M = —p; without loss of generality, we assume M = ¢. We
claim that T |= ¢.

So let N |=T. By our assumption, there is a structure A with embeddings
g: A — M and h: A — N. By quantifier elimination, ¢ is equivalent to a
quantifier-free sentence, and by Theorem M = ¢ implies N [ . O

Corollary 6.14. If £ has no 0-ary function symbols (constant symbols) or 0-
ary relation symbols (proposition symbols), then every satisfiable theory with
quantifier elimination is complete.

Proof. If £ has no 0-ary symbols, then there is a unique empty L-structure: each
n-ary function symbol is interpreted as the unique empty function " — &, and
each m-ary relation symbol is interpreted as the unique empty relation on @™.
This unique empty structure is (&) for every model M |= T. Thus, if T has
quantifier elimination, then 7T is complete, by Proposition [6.13

Another way of proving this is to note that if 7" has quantifier elimination,
then every sentence is T-equivalent to a quantifier-free sentence. But if there
are no 0-ary symbols, the only quantifier-free sentences are T and L. So for
every sentence ¢, either T = o <> T or T | ¢ <> L, which are equivalent to
T E ¢ and T | —¢p, respectively. O

It follows from Corollary that the theories T1,¢ and DLO from Ex-
amples and are complete, since their languages contain no constant
symbols or proposition symbols.
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6.3 Algebraically closed fields

We will now focus on applying our work so far to the theory ACF of algebraically
closed fields, proving quantifier elimination and deriving some consequences. We
work in the language of rings, Lring = {0,1,+, —,-}. Let Tring be the theory
of rings, and let Tgielq be the theory of fields.

For any polynomial p € Z[x1, ..., x,], there is an Lring-term t,(x) in context
z = {x1,...,2,} which is Tring-equivalent to p in the sense that in any ring
R, for any r € R®, tfi(r) = p(r). Conversely, it is straightforward to show
by induction that every Lging-term ¢(x) in context x = {z1,...,Zn} iS TRing-
equivalent to a polynomial in Z[x1, ..., 2,]. Similarly, if R is a ring and A C R,
letting S = (A), every Lging(A)-term is Tring-equivalent to a polynomial in
Slx1,...,2,] and vice versa. For this reason, when working with rings, we will
conflate polynomials with terms.

Every atomic Lring-formula ¢(x) has the form p(z) = ¢(x), where p,q are
polynomials. This is Tring-equivalent to the formula (p — ¢)(x) = 0, so every
atomic formula is Tring-equivalent to a polynomial equation f(z) = 0 (over Z,
or over S = (A) if we allow parameters).

For n € Ny, an important example of an atomic sentence is x,, which
asserts that the ring has characteristic dividing n:

14---+1=0.
—_———

n times

We can axiomatize the class of field of characteristic p (for prime p) by
TrietaU{Xxp}, and the class of fields of characteristic 0 by TrielaU{—Xp | p prime}.
The theory ACF of algebraically closed fields consists of the theory of fields
Trield, together with a sentence ¢4 for every degree d > 1, expressing that every
monic polynomial of degree d with coeflicients in the field has a root in the field:

Vag ...Vag_13x (xd +ag1z T+t aztag = 0).

We write ACF,, for ACF U {x,} when p is prime, and we write ACF for
ACF U {—x, | p prime}.

Theorem 6.15. ACF has quantifier elimination.

Proof. We use test (5) in Theorem So suppose K7 and Ky are algebraically
closed fields, ¢(x) is a primitive formula, and a € K¥ such that K7 = ¢(a). Let
A= {a)k,, and let f: A — K3 be an embedding. We would like to show that
K E ¢(f(a).

Note that since A is a subring of a field, it is an integral domain. Let F' be
the subfield of K; generated by A, i.e., F = {ab™! |a € A,b € A\ {0}}. Then
F = Frac(A), the field of fractions of A, and the embedding f extends to an
embedding g: F' — Ko, by g(ab™!) = f(a)f(b)~!. Let F’ = g(F), which is the
subfield of K5 generated by f(A). For a polynomial p € F[z], write p? for the
image of p under the isomorphism F[z] & F'[z] induced by g.

99

Lecture 17:
11/10



Write the primitive formula ¢(a) as 3y A._, ¢i(a, y). Since each ¢; is atomic
or negated atomic, we may assume that each ; is p;(y) = 0 or p;(y) # 0, where
p; € Fly]. Then we can write p(a) as Jy A, pi(y) =0 A /\?:1 q;(y) # 0.

Similarly, (f(a)) is Iy AiZy p{(y) = 0N Nj_1 4] (y) # 0.

Case 1: At least one of the p; is non-zero. Let b € K| be a witness to the
existential quantifier. Then b is algebraic over F. Let m € F[y] be the minimal
polynomial of b. Then for each 1 < i < m, m | p/, and for each 1 < j < n,
m1q;.

Since K5 is algebraically closed, we can pick a root b’ € Ko of m9. Since m
is irreducible, so is m9, so m9 is the minimal polynomial of &’. Then m9 | (p;)?
for all 1 <4 < m and m?{ (g;)? for all 1 < j < n, soV/ witnesses Ko = ¢(f(a)).

Case 2: Each p; is the zero polynomial (or m = 0). In this case, we only need
to find &’ € K, which is not a root of any of the finitely many polynomials (g;)7.
Since each polynomial has only finitely many roots in Ks and K5 is infinite
(being algebraically closed), we can find a witness &’ € K for the existential
quantifier.

In either case, K = ¢(f(a)), as desired. O

The theory ACF is not complete, because it does not determine the charac-
teristic: for any prime p, ACF [~ x,, and ACF }~ —y,. But as a first application
of quantifier elimination, we will show that the theories ACF, and ACFg are
complete.

Note that only very basic field theory was used in the proof. Nevertheless,
quantifier elimination has some very non-trivial consequences, as we will now see.
We’ll begin by explaining a reframing of quantifier elimination in the language
of (classical) algebraic geometry.

Let K be an algebraically closed field. Fixing m € w, let S C Klx1,...,Zm]
be a set of polynomials. Then we define

V(S)=A{(a1,...,am) € K™ | f(a1,...,am,) =0 for all f € S}.

A set of the form V(S) C K™ is called a algebraic set or a Zariski-closed
set (these are the closed sets of the Zariski topology on K™).

It is easy to see that for any S C Klx1,...,2y], if (S) is the ideal generated
by S, then V((S)) = V(S). Further, the Hilbert Basis Theorem says that
K[zy,...,2,] is Noetherian, i.e., every ideal is finitely generated. Thus, for
every algebraic set X C K™, there are finitely many polynomials pi,...,p,
such that X =V (p1,...,pn).

Given algebraic sets X C K™ and Y C K™, a polynomial map X — Y
is an n-tuple f = (f1,..., fn) with each f; € Klx1,...,2,,] such that for all
a=(a1,...,am) € X, fla) =(fr(ar,...,am)s--., fula1,...,am)) €Y.

It is not true in general that the image of an algebraic set under a polynomial
map is algebraic. For example, the image of the algebraic set V(zy — 1) C K2
under the coordinate projection K2 — K (defined by the polynomial x) is
K\ {0}, which is not algebraic (the proper algebraic subsets of K are all finite).
However, in this case we do get the complement of an algebraic set.
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A subset Y C K™ is constructible if it is a finite Boolean combination of
algebraic sets.

Corollary 6.16 (Chevalley’s theorem). Let X C K™ be an algebraic set, and let
f: X — K™ be a polynomial map. Then the image f(X) C K™ is a constructible
set.

Proof. Let X =V (p1,...,pr). We can define f(X) by the following formula:

k
Tz (/\pk(:c)sz(m):y).

This is an Lring-formula with parameters from K for the coefficients of the
polynomials pi, and f;. Note that f is an n-tuple of polynomials in m variables,
x is an m-tuple of variables, y is an n-tuple of variables, and f(z) = y is
shorthand for /\;L:1 fi(x) = y;.

By quantifier elimination, this formula is equivalent to a quantifier-free
formula, ¢(y). This ¢(y) is a Boolean combination of polynomial equations
q(y) = 0 with ¢ € K[yi,...,yn], so it defines a constructible subset of K. [

The theory ACF is not complete, since it does not determine the character-
istic. But it follows from QE that we obtain a complete theory once we fix the
characteristic.

Corollary 6.17. Let p be prime or 0. Then ACF, is complete.

Proof. Since ACF C ACF,,, ACF, has quantifier elimination. If p = 0, we take
A = Q, and if p is prime, we take A = ), the finite field of order p. Then
A embeds in any field of characteristic p, and in particular in every model of
ACF,, so ACF,, is complete, by Proposition O

If a theory T has a computably enumerable axiomatization (as the theories
ACF), for p prime or 0 do), then as soon as we know T is complete, we have
an algorithm for deciding which sentences are entailed by T' (we say that T is
a decidable theory). For any sentence ¢, start searching for a formal proof
T I ¢, and simultaneously start searching for a formal proof T'F —p. Since T
is complete, one of these searches eventually terminates. (Note that I have no
defined formal proof in this class).

But the algorithm described above is hopelessly inefficient. In many situa-
tions, a more efficient algorithm can be found via effective quantifier elimina-
tion, i.e. an algorithm for finding a quantifier-free formula which is T-equivalent
to a given formula. Applying this algorithm to an arbitrary sentence ¢ produces
a quantifier-free sentence 1 which is T-equivalent to it. But a quantifier-free
sentence v is just a Boolean combination of atomic sentences, the truth value
of which can usually be easily checked.

The proof we gave above that ACF has quantifier elimination was entirely
nonconstructive. An effective quantifier elimination algorithm exists for ACF;
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unfortunately, it is also very inefficient in the worst case (doubly exponential
running time in the size of the input).

We now dwell on some consequences of completeness for the theories ACF,.
In the following, the equivalence (1) < (2) is a version of the “Lefschetz princi-
ple” that all algebraically closed fields of characteristic 0 have the same algebraic
properties, while the equivalence (2) < (4) makes precise an intuition that the
behavior of algebraically closed fields of characteristic 0 is the “limit as p goes
to 0o” of the behavior of algebraically closed fields of characteristic p.

Corollary 6.18 (Transfer principle for algebraically closed fields). Let ¢ be a
sentence in the language of rings. The following are equivalent:

(1) Some algebraically closed field of characteristic 0 satisfies .
(2) Every algebraically closed field of characteristic 0 satisfies .

(8) For all but finitely many primes p, some algebraically closed field of char-
acteristic p satisfies .

(4) For all but finitely many primes p, every algebraically closed field of char-
acteristic p satisfies .

Proof. (1)=(2): If M = ACFy and M [ ¢, then ACF( £ —p, so ACFq = ¢
by completeness.

(2)=(4): We have ACFy = ¢, so by compactness there are finitely many
primes pi,...,p, such that ACFU {p; #0 |1 < i <n} = ¢. For any prime
g not among these finitely many exceptions, any algebraically closed field of
characteristic ¢ satisfies ACF U {p; # 0| 1 < ¢ < n}, hence satisfies .

(4)=(3): Trivial.

(3)=(1): Assume for contradiction that (1) fails. Then every algebraically
closed field of characteristic 0 satisfies . By (2)=-(4) for —¢, we have that for
all but finitely many primes p, every algebraically closed field of characteristic p
satisfies . This contradicts (3) (since there are infinitely many primes!). O

Here is a nice application of the transfer principle.

Theorem 6.19 (Ax—Grothendieck). Any injective polynomial map C* — C™
18 surjective.

The statement is obviously true if we replace C by a finite fields (since any
injective function from a finite set to itself is surjective). We will use model
theory to transfer the result to C. The key observation is the following general
statement.

Theorem 6.20. Let ¢ be a V3-sentence in Lrig which is true in every finite
field. Then ¢ is true in every algebraically closed field.

Proof. Fix a prime number p, and let K = F,, the algebraic closure of the
prime field F;,. Then K = h_r)nIFpn, which is a direct limit in which the index set
{n € w|n > 0} is ordered by the divisibility order.
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We assumed that ¢ is true in every finite field, and since it is inductive (v3),
it is preserved in direct limits, so K |= ¢, and by completeness, ACF,, = ¢.

We have shown that ¢ holds in all algebraically closed fields of finite charac-
teristic. It follows that it holds in all algebraically closed fields of characteristic
0 by Corollary O

Proof of Theorem [6.19. For each n and each degree d, we can express the state-
ment of the theorem restricted to polynomial maps C* — C™ such that each
polynomial has degree at most d, by the following sentence ¢g:

ViV ((f(x) = f(2")) = (x =2')) = Vy Iz (f(z) = y))
There are a few things to explain here.

(1) The quantifier Vf means to quantify over all polynomial maps C* — C" of
degree at most d. Such a polynomial map is an n-tuple of polynomials in
Clx1,...,xy,], each of degree at most d. To do this, we can quantify over
the coefficients of these polynomials. So really we have n(d+ 1) quantifiers,
over variables (a})1<i<n,0<j<d, Which specify polynomials p; = a? + a}z +
-~-+a§lwd for1<i<n.

(2) Similarly, the quantifiers over z, 2/ and y are over n-tuples, e.g., z =
(Ti)1<i<n-

(3) The formulas f(x) = f(2'), x = 2/, and f(z) = y are really conjunctions of n
atomic formulas, e.g. f(z) = f(2') is Aiey (pi(@1, ..., 20) = pi(2h, ..., 2})).

(4) pq is logically equivalent to a V3-sentence. We have to be slightly careful
about the presence of —, because ¢ — 1) is shorthand for = V 9, and — is
not allowed in the construction of V3-formulas. But we can rewrite ¢4 as
follows:

Vfvy Gz 3’ (f(z) = f(@) A (2 #2))) V 3z (f(2) = ).

Now for all d and any finite field F', we have F' = ¢4, since an injective map
from a finite set to itself is always surjective. By Theorem C E ¢gq for all
d, as desired. O

It is interesting to note that while it is also true that every surjective function
from a finite set to itself is injective, the converse of the Ax—Grothendieck theo-
rem fails. For example, = — 22 is a surjective polynomial map C — C which is
not injective. The proof fails in this case because the sentences asserting “every
surjective polynomial map is injective” are not equivalent to V3-sentences. They
are V3v.

We now return to some application that rely on the full strength of quantifier
elimination, not just completeness.

Definition 6.21. A theory T is strongly minimal if for every model M =T
and every L(M)-formula ¢(z) with a single free variable x, (M) is either finite
or cofinite.
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Theorem 6.22. ACF is strongly minimal.

Proof. Let K = ACF, and let () be an L£(K)-formula with one free variable.
By QE, ¢(z) is equivalent to a quantifier-free £L(K)-formula ¢ (z).

Every atomic L(K)-formula x(x) is equivalent to p(x) = 0, where p € K|[z],
and hence x(K) is finite (if p is non-zero) or K (if p is 0). In particular, x(K)
is finite or cofinite. Since the set of finite and cofinite subsets of K form a
Boolean algebra (they are closed under intersection, union, and complement
and contain @ and K), and ¢(x) is a Boolean combination of atomic L£L(K)-
formulas, p(K) = ¢ (K) is finite or cofinite. O

Strong minimality is a condition on formulas in one free variable (definable
subsets of M), but it has powerful consequences for all formulas (definable
subsets of M™ for all n) and on the class of models of T. Tl just give an
indication of this.

Theorem 6.23. Let T be a strongly minimal theory. Let o(xz,y) be a formula
where y is an arbitrary finite variable context and x is a single variable. Then
there exists N € w such that for all M =T and allb € MY, either |o(M,b)] < N
or | M\ ¢(M,b)] < N.

Proof. Consider the following partial type X(y):
{37z p(x,y) A Iz ~p(z,y) | n € w}.

If M =T and b € MY realizes X(y), then ¢(M,b) is infinite and coinfinite,
contradicting strong minimality of 7.

Thus X(y) is not satisfiable relative to T', and by compactness there is some
N € w such that 3ZVz ¢(x,y) A 32N x —p(z,y) is unsatisfiable in a model of
T. Tt follows that for all M = T and all b € MY, either |p(M,b)] < N or
|M\ o(M,b)] < N. O

For example, consider the case when ¢(z,y) is A, pi(z,y) = 0, a system
of polynomial equations defining the algebraic set V(p1,...,pn). The theorem
implies that if 7: K™*! — K™ is the projection map which forgets the -
coordinate, then there is a uniform upper bound on the size of finite fibers — and
in fact, this bound is uniform across all algebraically closed fields, depending
only on the syntactic form of ¢, i.e., the number of polynomials and their
degrees.

Here’s a theorem that I won’t prove, for time reasons.

Theorem 6.24. Let T be a strongly minimal complete theory. If k > |L|, then
T is k-categorical: Up to isomorphism, T has a unique model of cardinality k.

It follows that, since each theory ACF, is complete and strongly minimal
in a countable language, any two uncountable algebraically closed fields of the
same characteristic and cardinality are isomorphic.

Finally, we return to model completeness and existentially closed models.
Since ACF eliminates quantifiers, it follows immediately that ACF is model
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complete, and hence by Theorem that every algebraically closed field is
existentially closed (in the class of models of ACF). All the way back in Exam-
ple 1.9 we proved that a ring which is PEC in the class of non-zero rings is an
algebraically closed field, but we left open whether the converse is true. We can
now prove that it is:

Theorem 6.25. Let R be a non-zero ring. The following are equivalent:
(1) R is an algebraically closed field.
(2) R is EC in the class of models of ACF.

(8) R is PEC in the class of non-zero rings.

Proof. (3)=(1): by Example

(1)=(2): By Theorem ce ACF is model complete.

(2)=(3): Suppose K is EC in the class of models of ACF (so in particular, K
is an algebraically closed field). Let h: K — R be a homomorphism, where R is
a non-zero ring. Let ¢(z) be an 3*-formula, a € K*, and assume R = ¢(h(a)).
We must show K |= ¢(a).

By Theorem [4.10} let 2': R — F be a homomorphism from R to a PEC non-
zero ring F', and note that F' = ACF by (3)=-(1). (Alternatively, pick a maximal
ideal M in R, map R to the field R/M, and embed this field in its algebraic
closure.) The homomorphism A’ preserves 3T-formulas, so F | @(h/(h(a)).
Now h' o h: K — F is a homomorphism between fields, so it is injective, and
hence an embedding. Since K is EC in the class of models of ACF, h'oh reflects
©, so K |= ¢(a), as desired. O

Note that the definition of algebraically closed field only requires that poly-
nomials in one variable have roots, while the PEC condition refers to arbitrary
I+-formulas, i.e., roots of systems of polynomials in multiple variables. The
content of (1) = (3) in the above theorem is essentially Hilbert’s Nullstellen-
satz. I state it here in its “weak” form, because this is the one that follows most
immediately. It is easy (with a bit of commutative algebra) to derive the other
forms of the Nullstellensatz from this one, or to give model-theoretic proofs
using again the fact that models of ACF are EC.

Theorem 6.26 ((Weak) Nullstellensatz). Let K be an algebraically closed field.
For allpy,...,pn € K[x1,... 2], if 1 & (p1,...,pn) (i.e., the p; do not gener-
ate the unit ideal in the polynomial ring), then V(p1,...,pn) is non-empty.

Proof. Let R = K[x1,...,Zm]. Let h: K — R be homomorphism which in-
cludes K in R as the constant polynomials. Let I = (pi,...,pn), and let
q: R — R/I be the quotient homomorphism. Since I is not the unit ideal, R/I is
a non-zero ring. In R/I, (q(z1),...,q(zy,)) satisfies the formula A}, p;(z) = 0.
Indeed, for all 1 < i < n, pi(q(x1),...,q9(xn)) = q(p;) = 0, since p; € I. So
R/I = 3z A, pi(z). Since K is PEC in the class of non-zero rings, g o h
reflects this formula, and K = 3z A, pi(z). That is, V(p1,...,pn) € K™ is
non-empty. U
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It is a theorem of Macintyre that for an infinite field K, if Th(K) has
QE (in Lging), then K is algebraically closed. However, there are many non-
algebraically closed fields K such that Th(K) has quantifier elimination in a
mild expansion of the language, or such that Th(K) is model complete (in
‘CRing)'

One example is the field of p-adic numbers Q,, which is model complete in
Lring and has quantifier elimination in the language Lgring U {1V (P)new},
where ~! is a unary function symbol for multiplicative inverse (with 0= = 0),
V' is a unary relation symbol picking out the valuation ring Z,, and each P, is a
unary predicate picking out the set of n'" powers. This is also due to Macintyre.

Another example is the real field, which Tarski showed has quantifier elimi-
nation if we include the order in the language.

Example 6.27. Let RCF = Th(R) in Lging (RCF stands for the theory of real
closed fields). Let RCF<« = Th(R) in LRing,« = LRing U {<}. It is a theorem
of Tarski that RCF. has quantifier elimination and is complete. I claim that it
follows that RCF is model complete.

Note that the atomic formula z < y is equivalent in R to (z # y) A 32 (22 =
y — z), and its negation —(z < y) is equivalent to y > x, which is equivalent to
2 (22 =2 —y).

Now let ¢(x) be an arbitrary Lging-formula. By QE for RCF., ¢(zx) is
equivalent to a quantifier-free Lring <-formula ¥ (x), so ¢(R) = ¥(R). Write
¥ () in disjunctive normal form as a disjunction of conjunctions of literals. Now
each literal involving the symbol < can be replaced by an 3-formula in Lging,
as above, resulting in an 3-formula 6(z) in Lring. Note it was important here
that both < y and —(x < y) were equivalent to I-formulas. Now ¢(R) = 0(R),
so by completeness of RCF, RCF E Vx p(z) + 6(x), i.e., these formulas are
RCF-equivalent. We have proved that every Lging-formula is RCF-equivalent
to an J-formula, so RCF is model complete.

For example, the formula ¢(a, b, c): 3z ax? + br + ¢ is RCF-equivalent to
b? — 4ac > 0, which is equivalent to 3z 22 = b? — 4ac.

We can now mimic the proof of the Nullstellensatz to obtain a Nullstellen-
satz for real closed fields. There is an obstruction here: not every non-zero
ring admits a homomorphism to a model of RCF, so we need to understand
conditions on an ideal I such that R/I admits such a homomorphism. Call an
ideal I real if whenever 2?21 p? € I, each p; € I. Every ideal I is contained in
a smallest real ideal, called its real radical, and R/I admits a homomorphism
to a model of RCF if and only if I is a proper real ideal.

We then obtain the following statement: For all p1,...,p, € Rlz1,..., 2],
if the real radical of (p1,...,pn) is proper, then V(p1,...,p,) € R™ is non-
empty. The condition that the real radical is proper is equivalent to: for all
q€ (p1y...,pn) and all hy,... hy € R[z1,...,Tp],

k
g+ > hi#-1
i=1
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6.4 Model companions

As we have seen, some theories of mathematical interest happen to be model
complete in a natural language £ and we can often prove this by proving a quan-
tifier elimination result (in £ or a mild expansion). Another way of obtaining a
model complete theory is to start with a theory (usually a universal or inductive
theory which is far from being complete) and pass to a related model complete
theory called the model companion.

Given a theory T, we write Ty for the set of universal consequence of T', i.e.,
the set of all V-sentences ¢ such that T' = .

Lemma 6.28. Let M be an L-structure. Then M | Ty if and only if there
exists N =T and an embedding f: M — N.

Proof. Suppose M = Ty. Let T' = T U Diag(M). If T is unsatisfiable, by
compactness there exists ¢(m), a finite conjunction of literals in Diag(M), such
that T'U {¢(m)} is unsatisfiable. But then T = Vz —¢(x), so Vo —¢(z) € Ty,
contradicting M = Ty and M | p(m). Letting N = T’, we have N = T and
an embedding f: M — N.

Conversely, if f: M — N is an embedding and N | T, then N E Ty, and
since f reflects V-sentences, M = Ty. O

Example 6.29. The class of Lring-structures which embed in an algebraically
closed field is the class of integral domains. Thus ACFy = (Triela)v = TIp, the
theory of integral domains.

Every linear order L embeds in a dense linear order without endpoints. For
example, we can take z — (2,0) € L x Q ordered lexicographically. Similarly,
every linear order L embeds in a discrete linear order without endpoints. For
example, we can take x — (z,0) € L x Z ordered lexicographically. If follows
that if T is the theory of discrete linear orders without endpoints, then Ty, =
DLOy = 11,0, the theory of linear orders.

Definition 6.30. Theories T and T’ are companions if every model of T
embeds in a model of 77 and vice versa.

Lemma 6.31. T and T" are companions if and only if Ty = T),.

Proof. Suppose T and T" are companions. Let M = Ty. Then by Lemma
M embeds in N | T, and since T and T” are companions, N embeds in N’ = T".
Thus M embeds in a model of 7", so M |= T),. Thus Ty = T\,. The same
argument with 7" and T” reversed shows Ty = T?,.

Conversely, suppose Ty = TV,. Let M = T. Then M = Ty, so M = TV, so
M embeds in a model of 7" by Lemma The same argument with 7" and
T’ reversed shows T and T” are companions. O

It is straightforward to check from the definition, and obvious from Lemmal[6.31]

that companionship is an equivalence relation on theories.

Definition 6.32. Let T be a theory. A theory T* is a model companion of
T if T and T* are companions and 1™ is model complete.

67

Lecture 19:
11/17



Example 6.33. ACF is a model companion of the theory of fields and the
model companion of the theory of integral domains.

DLO is a model companion of the theory of discrete linear orders without
endpoints.

Lemma 6.34. Suppose T and T' are companions, T is an inductive theory,
and T" is a model complete theory. Then T' = T.

Proof. Let My = T'. Given M; &= T, we can find an embedding f;: M; —
N; E T and an embedding g;: N; — M, = T’, by companionship. Thus we
build a diagram:

Moy M, M,
NN TN
Ny Ny

Since T is inductive, ligNi E T. But lim M; h_r}nNZ-, o) HA’IMZ' ET.

Since T" is model complete, T’ isjso inductive by Theorem [6.4] Thus
lim M; E T'. Now M, embeds in lim M;, and because T” is model complete,
this embedding is elementary. So since @Ml =T, also My =T. O

It follows from Lemma that if 7" has a model companion 7%, then T is
the maximal inductive theory in the companionship class of T', in the sense that
it entails every other inductive theory in the class. Dually, Ty is the minimal
theory in the companionship class of T, since every theory in the class entails
Ty.

Theorem 6.35. Any theory has at most one model companion up to equiva-
lence.

Proof. Suppose T* and T™** are both model companions of T'. In particular, T
and T** are companions. Since T and T** are both model complete, they are
both inductive by Theorem ﬂ By Lemma m T E T* and T** E T*, so
these theories are equivalent. O

In the case of an inductive theory T, if T' has a model companion 7%, then
by Lemma every model of 7™ is a model of T. Our goal now is to show
that the models of T™ are exactly the existentially closed models of T'. For any
theory T, define

EC(T) ={M =T | M is EC in the class of models of T'}.

The following Lemma has essentially the same content as Lemma[£.13] which
was a key step in our proof of the compactness theorem. Now that we have
compactness, the proof is much easier.

Lemma 6.36. Let T be an inductive theory. Then EC(T) = EC(Ty).
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Proof. Assume first that M € EC(T). Since M = T, also M = Ty. Now let
f: M — N be an embedding with N = Ty. Since T and Ty are companions,
there is an embedding g: N — M’ = T. Let ¢(z) be an 3-formula and a € M?.
If N = ¢(f(a)), then M’ |= ¢(g9(f(a)), and since M is EC in models of T,
M = p(a). Thus M € EC(Ty).

Conversely, assume M € EC(Ty). Write T as a set of 3-sequents. Let
@tz €T. Assume that M = p(a) for some a € M*. We show M | ¢¥(a).

Since T and Ty are companions, let f: M — N be an embedding with
N E T. Then also N |= Ty, so f preserves and reflects 3-formulas, since M is
EC. Thus N = ¢(f(a)), and since N =T, N = ¢(f(a)), so M = ¢(a).

Since M is EC in the class of models of Ty and M =T, M is clearly EC in
the smaller class of models of T', so M € EC(T). O

Corollary 6.37. Suppose T and T’ are inductive theories which are compan-
ions. Then EC(T) = EC(T").

Proof. By Lemma EC(T) = EC(Ty) = EC(T"). O

Theorem 6.38. Let T be an inductive theory. Then T has a model companion
if and only if the class EC(T) of EC models of T is elementary. In this case,
the model companion T* is Th(EC(T)).

Proof. Suppose T has a model companion T*. I claim that T* axiomatizes
EC(T), so EC(T) is elementary.

Suppose M = T*. Since T* is model complete, it is inductive. Since T and
T* are companions, EC(T) = EC(T*) by Corollary [6.37 But since T* is model
complete, every model of T* is in EC(T™), so the class of models of T* is exactly
EC(T).

Now suppose EC(T) is elementary, axiomatized by T’. We show that T” is
a model companion of T'. First, we show that T" and T are companions. Every
model of 7" is an EC model of T, in particular a model of T, and it embeds in
itself. So let M = T. Since T is inductive, by Theorem M embeds in an
EC model of T, which is a model of T".

Finally, we show that 7" is model complete. If M =T’ then M is EC in the
class of models of T. Then M is also EC in the smaller class of models of T".
Since every model of T is EC in the class of models of 77, T” is model complete
by Theorem O

Example 6.39. Tgjqq is an inductive theory, and its model companion ACF =
Th(EC(TFicld))-

Letting T be the theory of discrete linear orders without endpoints, 7" is not
inductive, and indeed a model of DLO is not a model of T. But Ty = Tio is
inductive, and DLO = Th(EC(TL0)).

Example 6.40. Let Lcraph = {E}, and let T be the theory of acyclic graphs
(i.e., forests), axiomatized by:

o Vr—zFEx.
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o Vo (zEy — yEx).
e Foralln >3, Voy...2, (anxl A /\?:_11 Ty = l‘i+1)~

I claim that 7" has no model companion.

Suppose for contradiction that 7" has a model companion T*. Note that T is
a V-theory, hence inductive, by Theorem [6.38] 7 is the theory of existentially
closed acyclic graphs.

Let ¢, (z,y) be the formula asserting that there is no path of length < n
from z to y, and let ¥(z,y) = {¢n(z,y) | n € w}. Each ¢, (z,y) is realized
by the endpoints ag and a,41 of the path graph P, of length (n + 1). Now P,
embeds in an EC M,, | T*, and since M, is acyclic, no shorted path from ag
to an+1 can be introduced, so M,, = ¢, (ag,ant+1). By compactness, there is a
model M = T* and a,b € M realizing 3, i.e., there is no path from from a to
b. So M is not connected.

But now we can embed M in M’ = M U {c} with a new vertex ¢ connected
only to a and b. Since there is no path from a to b in M, M’ is acyclic, so
M’ |=T. But the inclusion M — M’ fails to reflect the formula 3z (xEz A zEy),
contradicting the fact that M’ is EC.

Another way to view the above example is that every EC acyclic graph is
connected, but this property is incompatible with the compactness theorem.
This is a typical strategy for showing that a theory has no model companion.

Example 6.41. We now show that Tqroup has no model companion.

It is a fact that for any group G and a,b € G of the same order (finite or in-
fintie), there exists a group extension G < H such that a and b are conjugate by
an inner automorphism in H, i.e., there exists h € H such that hah™! = b. H is
called an HNN extension of G (after Graham Higman, Bernhard Neumann, and
Hanna Neumann). The construction of H is easy: presenting G by generators
and relations as G = (X | R), let H = (X, h | R, hah'b~1). The non-trivial part
is showing that the homomorphism G — H induced by these presentations is
an embedding.

It follows that if G is an EC group and a,b € G have the same order, then
a and b are conjugate by an inner automorphism in G (since the embedding of
G in the HNN extension reflects the formula 3z (zz2~! = y)).

Now suppose for contradiction that the class of EC groups is axiomatizable
by T, oup- We construct a model of 7§, with two elements of infinite order
which are not conjugate by an inner automorphism.

Let

S(a,y) = {32 (a2 = )} U{a" # e,y # e |n > 1},
By compactness, it suffices to find a model of T¢,,,,, containing two elements of
order greater than n which are not conjugate by an inner automorphism. Let p
and ¢ be primes greater than n, and let G be a group with elements a and b of
order p and ¢, respectively. Embed G in an EC group G* |= T roup- Since the
embedding f: G — G’ is injective, a and b still have order p and ¢ in G*. Since
they have different orders, they cannot be conjugate by an automorphism.
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For any 3-formula ¢(z), define
Contg = {¢(x,y) quantifier-free | T = VaVy =~ ((x,y) A p(z))}.

In other words, Contg consists of quantifier-free formulas, possibly in larger
variable contexts, which contradict ¢ in models of T. Another way to put it
is that ¢(z,y) € Contg if and only if T = (p(x) sy —¢(x,y)) if and only if
T = (¢(z) Fy Yy <p(z,y)). Hodges calls the set of all V-formulas entailed by
©(z) the “resultant” of ¢ (in analogy with the polynomial resultant in algebra).
The content of the Hodges’s resultant is essentially the same as my Contg.

Lemma 6.42. Let T be a theory. Then M € EC(T) if and only if M =T and
for every I-formula (x) and every a € M?, either M = ¢(a) or there exists
Y(z,y) € Contg and b € MY such that M = ¢(a,b).

Proof. First, assume M = T is EC. Let ¢(x) be an 3-formula and let a € M?,
and assume M [~ op(a). Since M is EC, T'U Diag(M) U {p(a)} is unsatisfiable.
By compactness there is a formula 1 (a,b), a finite conjunction of literals in
Diag(M), such that T'U {¢(a,b), ¢(a)} is unsatisfiable. Then T' = Vz =(¢(x) A
Y(x,y)), so Y(z,y) € Contg(m), and M E ¢¥(a,b).

Conversely, let f: M — N be an embedding, with M, N = T, let ¢(x)
be an 3-formula, and let a € M?. It suffices to show that if M [ ¢(a),
then N [ o(f(a)). By our hypothesis on M, there exists 1(x,y) € Contg and
b € MY such that M = v(a,b). Then N = ¢(f(a), f(b)). Since ¢(z,y) € Contg
and N ET, N [~ ¢(f(a)), as desired. O

Theorem 6.43. Let T be an inductive theory with a model companion T*.
Then for every 3-formula o(x), there is an 3-formula $(x) such that T* =
Vo (mp(x) < @(x)). With this notation, T* can be axiomatized as

T UA{Vz (p(x) Vo(x)) | p(x) an I-formula }.

Proof. Since T* is model complete, by Theorem for every 3-formula ¢(x),
—p(x) is T-equivalent to an I-formula @(z). Note that if we write @(z) in
normal form as \/f:1 Jyt i (z,y), where each 1; is quantifier-free, then T* =
Vavyt (vi(z,y') — p(x)), so T* | VaVy —(vi(x, y*) Ap(x)). Thisis a V-sentence,
so since T and T* are companions, also T' = VaVy —(v;(z,y") A ¢(z)). Thus
each 9;(z, ") is in Contg.

Since T is inductive, T* = T, so every model of T* satisfies

T U{Vx (p(z) vV ¢(z)) | ¢(z) an I-formula }.

Conversely, suppose M is a model of this theory. It suffices to show that M €
EC(T). Let ¢(x) be an I-formula and a € M?*, and assume that M [~ o(a).
Then M = $(a), so there is some i and some b € MY such that M = 1;(a, b).
Since v;(z,y") € Contg, by Lemma M € EC(T). O
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Properties of the model companion 7™ can often be determined from prop-
erties of T. Here we consider “how complete” the model companion is. Note
that since T* is model complete, for any M |= T*, T* U Diag(M) is complete.
And T* has QE if and only if for any substructure A C M = T*, T* U Diag(A)
is complete. The next definition generalizes this.

Definition 6.44. Suppose T* is a model companion of T'. We say that T™ is
a model completion of T if for every M = T, T* U Diag(M) is a complete
L(M)-theory.

The name “model completion” is rather unfortunate, since a model comple-
tion need not be complete. For example, ACF is a model completion of Tgielq.

Definition 6.45. Let T be a theory.

1. T has the joint embedding property (JEP) if for all By, By = T,
there exists C' = T and embeddings g;: By — C and go: By — C.

2. A | T is an amalgamation base if for all By, Bs; = T and embed-
dings f1: A — B; and fy: A — By, there exists C' = T and embeddings
g1: By — C and go: Bo — C such that gy o fi = g2 0 fo.

3. T has the amalgamation property (AP) if every A =T is an amalga-
mation base.

Lemma 6.46. Suppose T is a complete theory. Then T has JEP for elementary
embeddings: for all By, Bs = T, there exists C =T and elementary embeddings
g1: By = C and go: Bs — C.

Proof. Let My, Ms = T. The empty map M --» N is a partial elementary
map, because M; = Ms. By Theorem[5.19] there exists an elementary extension
My = N and an elementary embedding M; — N. O

Lemma 6.47. Suppose T and T’ are companions. Then T has JEP if and only
if T' has JEP.

Proof. Since companionship is symmetric, it suffices to assume T" has JEP and
prove T" has JEP.

Let By,Bs = T. Since T and T’ are companions, there exist embeddings
hi: By — B and hy: By — B} with By, B} = T’. Now since 7" has JEP,
there are embeddings g;: B} — C’ and go: B — C’ with C' | T’. Finally,
by companionship again, there is an embedding f: C' — C with C = T. So
fogiohy and f o go o hy witness that T has JEP. O

Theorem 6.48. Suppose T™* is a model companion of T. Then T™* is complete
if and only if T has JEP.

Proof. Suppose T* is complete. By Lemma [6.46] 7* has JEP. Since T and T*
are companions, by Lemma T has JEP.
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Conversely, suppose T has JEP. To show T™* is complete, it suffices to show
that for any My, Ms = T*, M; = M,. By Lemma T* has JEP. Thus there
are embeddings g1: M7 — N and go: My — N with N = T*. Since T* is model
complete, g1 and g9 are elementary embeddings, so M; = N = M. O

Theorem 6.49. Suppose T* is a model companion of T and A = T. Then
A is an amalgamation base for T if and only if T* U Diag(A) is a complete
L(A)-theory.

Proof. Write T'(A) for T U Diag(A) and T*(A) for T* U Diag(A). We need to
observe the following things:

(1) A model of T(A) is a model B of T together with an embedding f: A — B.
If B and B’ are models of T'(A), with embeddings f: A - Band g: A — B/,
an L(A)-embedding h': B — B’ is the same as an L-embedding h: B — B’
such that ho f = g.

(2) A is an amalgamation base for T' if and only if T'(A) has JEP. Indeed, given
fi: A— By and fo: A — Bs, we can view B and By as models of T'(A).
Then by JEP, there are L(A)-embeddings g;: By — C and go: By — C
with C = T'(A). Since C = T(A), it comes with an embedding h: A — C,
and we have g1 o fi = h = go o fo. The converse is similar.

(3) T(A) and T*(A) are companions. Let B |= T(A). Then B | T, and we
have an embedding f: A — B. Since T and T* are companions, there is
an embedding g: B — C with C |=T*. Letting h=go f: A — C, we can
view C' as a model of T*(A). Since go f = h, g is an L(A)-embedding. The
other direction is similar.

(4) T*(A) is model complete. If g: M — M’ is an L£(A) embedding between
models of T*(A), then it is also an L-embedding between models of T*.
Since T™ is model-complete, ¢g is an elementary embedding in £. Thus
is preserves all first-order formulas with any parameters from M, and in
particular, it preserves formulas using parameters from the image of A in
M. So g is an elementary embedding in £(A).

Now A is an amalgamation base for T if and only if T'(A) has JEP. By points (3)
and (4) above, T*(A) is a model companion of T'(A). Thus, by Theorem [6.48)
T(A) has JEP if and only if T%(A) is complete. O

Corollary 6.50. Suppose T is a model companion of T. Then T* is a model
completion of T if and only if T has AP.

Proof. By Theorem [6.49] T* is a model completion of T if and only if T* U
Diag(A) is complete for all A |= T if and only if every model of T' is an amalga-
mation base if and only if T" has AP. O

Corollary 6.51. Let T be a model complete theory. T is complete if and only
if Ty has JEP, and T has QF if and only if Ty has AP.
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Proof. Note that T' and Ty are companions, so since T' is model complete, T is
the model companion of T%y. Then the first assertion is direct from Theorem [6.48]

For the second assertion, by Theorem [6.7} T has QE if and only if for every
substructure A C M with M |= T, TUDiag(A) is a complete L(A)-theory. Since
the substructures of models of T are exactly the models of Ty (Lemma, T
has QE if and only if T" is a model completion of Ty, if and only if 7y has AP

by Corollary O

Suppose T is inductive and has a model companion T*. If Ty has AP, then
T* has QE by Corollary In this case, in the statement of Theorem
for every J-formula p(z), we can take the formula @(x) to be quantifier-free.
Then we can rewrite the sentence Y (p(z) V ¢(z)) as

Vo (~@(x) = ¢(x)),

or as the 3-sequent
P() Fo ()
Axioms of this form are often called extension axioms: If some a € M?*
satisfies the quantifier-free condition —@(x), then it can be extended in the way
described by the 3-formula ¢(z).
The result of Theorem then says that 7™ can be axiomatized by these
extension axioms:

TU{-¢(z) F ¢(z) | p(z) an F-formula}.
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7 Countable models

Throughout this rest of these lecture notes, we assume that £ is a countable
language, so that the number of £-formulas in any finite context is countably
infinite. Further, we assume that T is a complete, theory with infinite models
(from which it follows by the Downward Lowenheim—Skolem Theorem, Theo-
rem that 7" has models of cardinality Rg).

We will study the countable models of T" and elementary embeddings be-
tween them. The main question we want to address is whether T" has countable
models which are largest or smallest with respect to elementary embeddings.
More precisely, we ask whether T" has a universal countable model, into which
every other countable model embeds elementarily, or whether T have a prime
model, which embeds elementarily into every other model. Note that prime and
universal models are typically not terminal and initial objects in the category
of countable models: the elementary embeddings will rarely be unique.

We will characterize the existence of universal and prime models, as well as
No-categoricity (the existence of a unique countable model up to isomorphism),
in terms of properties of the spaces of complete types relative to T', and we
will identify special kinds of countable models (saturated and atomic mod-
els, which are always universal and prime, respectively) in terms of the types
they realize. We will show that the existence of a universal model implies the
existence of a prime model. And we will end with a discussion of the possible
numbers of countable models up to isomorphism a theory may have.

7.1 Type spaces

Recall that for a context z, a complete type in context = (relative to T') is a set
p(z) of formulas in context = which is satisfiable in a model of T" and such that
for any formula ¢(x), either (z) € p or ~p(z) € p. We write S,(T) for the
set of all complete types in context x (relative to T). When x is the context
{z1,..., 2}, we write S, (T) for S,(T).

Similarly, if A C M |= T, we write S, (A) for the set of complete types in
context x with parameters from A. This is just S;(7T(A)), where T(A) is the
L(A)-theory Th(M(A)).

For any formula ((z), we define [p(x)] = {p € S.(T) | p(z) € p}.

Lemma 7.1. For any formulas p(x) and ¥(x), ¢ and ¢ are T-equivalent if and
only if [p] = [¢].

Proof. Suppose ¢ and i are T-equivalent. By symmetry, it suffices to show
that [p] C [¢]. So suppose p € [¢], i.e., ¢ € p. Since  and 1 are T-equivalent,
{¢, )} is not satisfiable in any model of T, so =t ¢ p. Since p is complete,
Y €p,sope i)

Conversely, suppose ¢ and v are not T-equivalent. Without loss of general-
ity, there is some M =T and a € M* such that M |= ¢(a) and M | —(a).

Then tp(a) € [@] \ [¢], so [¢] # [¢. 0
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Lemma 7.2. Let any formula p(x) and (z),
(a) [p(x) Ap(a)] = [p()] N [$(2)].

(0) lp(z) Vo (@)] = [p(2)] U [d(2)].

(¢) [~p(a)] = Sa(T) \ [p(x)].

Proof. For (a), suppose p € [p A], so ¢ A1) € p. Since p is satisfiable, —¢ ¢ p,
so since p is complete, ¢ € p. Similarly, ) € p. Thus p € [p] N [¢)]. Conversely,
suppose p € [p] N [Y], so ¢ € p and 1 € p. Since p is satisfiable, =(¢p A ©) ¢ p,
so since p is complete, ¢ A € p. Thus p € [p AY].

For (c), every complete type contains either ¢ or -, and no complete type
contains both, since complete types are satisfiable.

(b) follows from (a) and (c). O

We endow each type space S, (T") with a topology, taking as a basis of open
sets

{lp(z)] | p(z) a formula}.

Notice that each basic open set [p(x)] is closed as well (i.e., it is clopen) since
it complement [—p(z)] is also open.

Theorem 7.3. Each type space S, (T') is a Stone space: A zero-dimensional
compact Hausdorff space.

Proof. Zero-dimensional means that the space has a basis of clopen sets, which
we have already observed.

The Hausdorfl property means that for all p # ¢ in S;(T), there are open
neighborhoods p € U and ¢ € V with U NV = @. Since p and ¢ are distinct
complete types, there is some formula ¢(z) such that ¢(z) € p and —¢(zx) € q.
Then [p(z)] and [~ (z)] are disjoint open neighborhoods of p and ¢ respectively.

It suffices to check compactness on open covers by basic open sets. So
suppose {[p(z)] | ¢ € I} is a basic open cover of S, (7). We would like to show
it has a finite subcover. Since (J,c;[p(z)] = S:(T), taking complements we
have (¢ [~¢(2)] = @, i.e., no complete type contains

E(z) = {~p(x) | ¢ eI}

Therefore this set is not satisfiable (if it were satisfiable, the complete type of any
realization would contain ¥(z)). By compactness, there is a finite subset J Cg,, T
such that Xg(x) = {-¢(z) | ¢ € J} is unsatisfiable. Then no complete type
contains Xo(z), so (¢ ;[~¢(x)] = @. Taking complements again, ¢ ;[»(z)] =
Sy (T). Thus {[p(x)] | ¢ € J} is a finite subcover, and S;(T") is compact. O

7.2 Countable saturated models

Definition 7.4. Let M = T be a countable model. M is saturated if for all
finite A Cg, M, every type p(x) € S1(A) is realized in M.
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The condition that A is finite is essential: since M is infinite, the partial
type {x # m | m € M} is consistent by compactness, hence it extends to a
complete type in Sy (M), which is not realized in M.

The definition of saturated has a lot in common with the definition of exis-
tentially closed. They both capture different senses of the motto “anything that
could happen (in a larger model) happens already”

Given a saturated model M, if we take an elementary extension M < N
and b € N\ M, for any A Cg,, M, the complete type tp(b/A) can be realized
back in M. Compare with an EC model M, where if M is a substructure of N
(not necessarily elementary) and b € N\ M realizes some quantifier-free formula
@(z) with parameters from M, i.e., from a finite A Cg, M, then ¢(z) can be
realized back in M.

So the main differences are that in saturated models, we consider elemen-
tary embeddings and complete types, while in EC models, we consider ordinary
embeddings and quantifier-free formulas. Also, the definition of EC refers to
formulas in arbitrary finite variable contexts, while the definition of saturated
refers to types in one free variable. As we will see, we can bootstrap the sat-
uration condition to arbitrary (even countable) variable contexsts, while the
definition of EC has no reduction to one variable in general.

Lemma 7.5. If AC M is a set, f: A — M’ is a partial elementary map, and
p € Sz(A), then

fir =Ap(@, f(a)) | p(z,a) € p}
is a complete type in Sy (f(A)).

Proof. For any L(f(A))-formula ¢(z, f(a)) in context z, either p(x,a) € p or
—p(,a) € p, so either p(z, f(a)) € fup or ~p(z, f(a)) € fup.

So it only remains to check that f,p is satisfiable. Since since p and hence
also f.p is closed under conjunction, by compactness it suffices to show that
for every formula o(z, f(a)) € fip, w(z, f(a)) is satisfiable in M’. Since p
is satisfiable in M, M | Jx¢(z,a), and since f is partial elementary, also

M’ E Jeg(e, f(a)). O

Theorem 7.6. Let M = T be a countable saturated model. Suppose N =T
is countable and f: N --» M is a partial elementary map such that dom(f) =
A Cqn N. Then [ extends to an elementary embedding g: N — M.

As a consequence, M is universal: For all countable N |= T, there exists an
elementary embedding N — M.

Proof. Enumerate N as (n;);c,,. We define a chain (g;);c. of partial elementary
maps by recursion such that dom(g;) = A; = AU{n; | j < i}. In the base case,
take go = f with domain Ag = A.

Given g;, consider p(z) = tp(n;/A;). Since g;(A;) is finite and M is sat-
urated, there is a realization m; of (g;)«p € Sz(gi(A;)) (by Lemma [7.5). Let
gi+1 extend g; by gir1(n;) = m;. Then g, is partial elementary, since for
any formula ¢(zg,...,2;), N E ¢(ng,...,n;) iff o(no,...,ni—1,2) € p iff
©(gi(no), -, gi(ni—1), ) € (9:)p M = @(giv1(no), - - -, git1(ni-1), git1(ni)).
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Finally, the union f = J,c,, fi is an elementary embedding N — M.

For the last statement, if M is a countable saturated model and N is any
countable model, the empty function is a partial elementary map N --» M,
since T' is complete. So it extends to some elementary embedding N — M. [

Corollary 7.7. Let M =T be a countable saturated model. Let A Cgy M and
let x be a countable variable context (so |x| < Ng). Then every p € Sy (A) is
realized in M.

Proof. Let p € S;(A). Since p is a complete type, it is satisfiable by b € N? in
some elementary extension M =< N. By Léwenheim—Skolem, since A is finite
and b is countable, we can take a countable elementary substructure N’ < N
such that A C N’ and b € (N')*. Then b realizes p in N’. Note that the
identity map A — A is a partial elementary map N’ --» M, since if N’ | ¢(a)
with @ € AY, then N = ¢(a), and M = ¢(a). By Theorem there is an
elementary embedding g: N — M extending the identity map on A. Then
g(b) € M* realizes p. O

The proof of Theorem used a method called “going forth”, where we
define an elementary embedding one element at a time by recursion. In the
next theorem, we will try to use the same idea to build an isomorphism. To do
that, we need to ensure that the elementary embedding we build is surjective, so
we need to go “back-and-forth”, at each step adding one element of the domain
and one element to the range.

Theorem 7.8. Suppose M =T is a countable saturated model. Then:

(1) If M' = T is another countable saturated model and f: M --» M’ is a
partial elementary map with dom(f) = A Cg, M, then f extends to an
isomorphism g: M = M’'.

(2) M is the unique countable saturated model of T up to isomorphism.

(8) M is strongly homogeneous: For any finite context x and a,a’ € M?*, if
tp(a) = tp(a’), then there is an automorphism o € Aut(M) such that
ola) =d'.

Proof. For (1), enumerate M = (m;)ic, and M’ = (m});e,,. We define a chain
(gi)icw of partial elementary maps by recursion such that for all 4,

and
B = f(A)u{m] | j <i} Cran(g:).

In the base case, take go = f with domain Ay = A and range By = f(A).

Given g;, we first extend g¢; to g} with m; € dom(g,) exactly as in the
proof of Theorem using saturation of M’. Now we extend g, to g;+1 with
m € ran(gs1).
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Note that h; = (¢gi)~! is a partial elementary map M’ --» M. Extend h;
to hit1 with m} € dom(h;41) exactly as in the proof of Theorem this time
using saturation of M. Now g;11 = h_, +11 is the required partial elementary map.

Finally, g = ;¢,, 9i is an elementary map M — M’ (because each m; is in
its domain) which is surjective (because each m/ is in its range), and hence an
isomorphism.

(2) follows immediately from (1), since if M’ = T is another countable
saturated model, then the empty function is a partial elementary map M --+
M', since T is complete, so it extends to an isomorphism M = M’.

(3) also follows immediately from (1), since if tp(a) = tp(a’), then the func-
tion mapping a to a’ (according to their common enumeration by the variables
x) is a partial elementary map M --» M, so it extends to an automorphism of
M. O

You may wonder whether these definitions and results extend to uncountable
models. They do have natural generalizations, we just need to use transfinite
recursion for the proofs.

For an infinite (possibly uncountable) model M and an infinite cardinal &:

e We say that a structure M is k-saturated if for every A C M with
|A| < k and every p € S1(A), p is realized in M. If M is infinite, M
cannot be k-saturated for any x > |M|. So we say M is saturated if it is
| M|-saturated, i.e., it has the maximal amount of saturation it can.

e We say that M is k-universal if every N = T with |N| < k embeds
elementarily in M, and we say that M is universal if it is | M |-universal.

e We say that M is k-strongly homogeneous if for all x with |z| < k and
a,a’ € M7, if tp(a) = tp(a’), then there is an automorphism o € Aut(M)
such that o(a) = @, and we say that M is strongly homogeneous if it
is | M|-strongly homogeneous.

Now just as we proved above, uncountable saturated models are unique
up to isomorphism (when they exist), universal, and strongly homogeneous.
However, they do not always exist (even countable saturated models do not
always exist, as we will see in a moment). It is a theorem that for any theory
T with infinite models and any cardinal x, T has a k-saturated model (which
may have cardinality much greater than x). But if we want to work with -
saturated models, some of the above breaks down. A k-saturated model is
always k-universal, but it may not be k-strongly homogeneous or unique up to
isomorphism (essentially because we cannot enumerate its elements in order-
type k).

What is still true is that k-saturated models are k-homogeneous: For all
z with |z| < k and a,a’ € M® and b € M, if tp(a) = tp(a’'), then there exists
b € M such that tp(ab) = tp(a’d’) (we only have to realize the appropriate
type). This other notion of homogeneity is the reason that the automorphism
version is called strongly homogeneous.
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We have seen that saturated models are nice. Now we address the question
of when countable saturated models exist.

Definition 7.9. We say that T is small if |S,,(T)]| < Xg for all n € w.
Theorem 7.10. The following are equivalent:

(1) T is small.

(2) T has a countable saturated model.

(3) T has a countable universal model.

Proof. We have already proved (2) = (3) (Theorem [7.6)).

For (3) = (1), suppose T has a countable universal model M. Let n € w.
For any type p € S,(T), p is realized by a € N™ in some countable model
N E T. By universality, there is an elementary embedding f: N — M. Then
M = p(f(a)). So M realizes every type in S,,(T"). But there are only countably
many n-tuples in M"™, and each realizes only one complete type, so there are
only countably many types in S, (7).

For (1) = (2), assume T is small. We must construct a saturated model. We
begin with the observation that if M |= T is any model and A Cg,, M is a finite
subset, then |S;(A)| < Rg. Indeed, enumerating A = {a1,...,a,}, and letting
Yy = (Y1,...,Yn), there is a map S;(A) — Sz (T) given by p(x,a1,...,a,) —
p(z,y1,...,yn). Here is another way to describe this map: let p(x) € S,(A),
and let b be a realization of p(x) in some elementary extension M’ of M. Then
p(x) — tpyp(bas...a,). This map is injective, so |Sz(A)] < [Sey(T)] < Ny,
since 71" is small.

Now let My be any countable model of T'. There are countably many finite
subsets A Cq, My, and for each such A, the type space S, (A) is countable.
So we can enumerate all of the types over finite subsets of My as (pn)necw. We
build an elementary chain My < M; < Mj such that each M, realizes p,, and
is countable (by applying Loweheim—Skolem). Let Ny = My and Ny = lim M,,.
Then Ny < N1, so N7 =T, and as a countable direct limit of countable models,
N; is countable. Moreover, Ny realizes every type over every finite subset of
Ny.

Repeating, we build an elementary chain Ny < N; < Ny =< ... such that
each ;41 is countable and realizes all types over all finite subsets of N;. Letting
N, = lim N;, again N,, = T and N, is countable. Finally, N, is saturated, since
if ACqn N, and p € S;(A), we have A C Ny, for some k € w, and p is realized
in Nk+1. O

Note that it is not true in general that every universal countable model of T'
is saturated. The fact is just that the existence of a universal countable model
is equivalent to the ezistence of a saturated countable model.

As an example, M = Z x Q with the lexicographic order is a saturated
model of the theory of discrete linear orders without endpoints, hence it is
universal. Now M embeds in N = M + Z (appending an additional copy of Z
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whose elements are greater than all elements of M). Then N is still universal,
since every countable model embeds in M, which embeds in N. But N is not
saturated, since the complete type asserting that > 0, z > S(0), x > S(5(0)),
etc. is not realized in N.

The conditions for the existence of saturated models of uncountable cardi-
nality x are much more delicate: we either need strong set-theoretic assumptions
about # (like being strongly inaccessible or an instance of GCH: k = AT = 2*),
or strong conditions on 7" bounding the sizes of its type spaces over infinite sets
of parameters (stability).

7.3 Model theoretic forcing

In this section, we retain our convention that L is countable, but we relax our
focus on complete theories for a moment.

Fix a V-theory T (a set of V-sentences). We introduce a new method of
building countable models of T, called “model theoretic forcing”, which gives
us much better control on the constructed model than black box applications
of compactness.

Let £ = LU{¢ | i € w}, where the ¢; are new constant symbols. A
condition is a finite set C of literal £'-sentences such that T'U C' is satisfiable.
Let C be the set of conditions, partially ordered by C.

An ideal in (C,C) is a set Z C C of conditions with the following properties:

1. 7 is non-empty.
2. 7 is downwards closed: If C € Z and C’ C C, then C’ € I.
3. 7 is directed: If C,C’ € Z, then there exists D € Z with C,C’ C D.

Using condition 2, we could replace condition 1 by @ € Z, and we could replace
condition 3 by CUC’ € T.

Given an ideal Z, Az = |JZ is a set of literal £'-sentences. Since every
finite subset of Az is a condition C' € Z (using conditions 2 and 3), it follows
by compactness that T'U Az is satisfiable. Conversely, if A is a set of literal
L'-sentences such that TUA is satisfiable, it is easy to check that JA = Pgp(A)
is an ideal in C.

The main idea of model theoretic forcing is this: We want to carefully build
an ideal Z by assembling it from conditions in C such that Az is the diagram
of a model of T" with the properties we want. The properties we can ensure
through this construction are called “enforceable”.

Let U be a set of conditions. We say U is open if it is upwards closed: if
C eUand C C (', then C' € U. We say U is dense if for every C € C, there
exists D € U with C' C D. The reason for the topological names is that we can
put a topology on C whose basic open sets have the form Us = {D € C | C C D}
for C' € C. In this topology, dense and open have their usual meanings. However,
we won’t use this topology in any way other than this terminology.
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Let P be a set of ideals. We say that P is enforceable if there is a countable
set U of dense open sets in C such that for any ideal Z, if ZNU # @ for all
UeU,thenT € P.

Theorem 7.11 (Rasiowa—Sikorski lemma). If P is an enforceable set of ideals,
then for any condition C, there exists an ideal T € P with C € T.

Proof. Enforceability of P is witnessed by U = {U; | i € w} where each U; is
dense and open. We build a sequence of conditions (C});c. by recursion. Let
Cy = C. Given Cj, by density of U;, we can pick C;y; € U; with C; C Cj41.
Now let T = | U, Ci ={D € C| D C C; for some i € w}. This is an ideal
in C. We have C =CyeZ and for alli € w, C;4.1 € ZNU;, 80T € P. O

Here is another way of looking at the construction that might better motivate
the definition of enforceability. Consider a game between two players, Vbelard
and dloise. Vbelard goes first, picking a condition Cy. The players then take
turns picking conditions C; such that C; C C;41 for all i. After playing forever,
we let T = | J;c; Cs. If P is enforceable, then Jloise has a strategy to “force”
T € P: On her i*" turn, she picks condition Co;y; such that Cy; C Coiy1 and
Coit1 € U;.

The key property of the family of enforceable sets is that it is closed under
countable intersections.

Theorem 7.12. If (P,)new 18 a countable family of sets of ideals, each of which

is enforceable, then (), ., Pn is enforceable.

Proof. For each n € w, pick U, witnessing enforceability of P. Then U, =
U e, Un is a countable set of dense open sets in C. For any ideal Z, if ZNU # @
forall U € U,, then Z € P, for alln € w,so T € ﬂnew P,,. Thus U, witnesses
enforceability of (.., Pn- O

Let’s now check enforceability of some desirable properties. For a condition
C, let supp(C) be the finite set of constant symbols mentioned in sentences in

C.

Lemma 7.13. The set of ideals T such that Az is complete (either ¢ or —p is
in Az for each literal L'-sentence ) is enforceable.

Proof. For each literal £'-sentence ¢, let U, = {C' | ¢ € C' or ~¢p € C'}. Then
U, is clearly open. For density, let C be a condition, and let M =T UC. Then
M = ¢ or M = —p, so at least one of C' U {p} and C U {—p} is a condition
in U,. If T meets U, for all ¢, then Az is complete, so this set of ideals is
enforceable. 0

Lemma 7.14. The set of ideals T such that for all closed L'-terms t there exists
1 € w such that t = ¢; € Az is enforceable.

Proof. For each closed £'-term ¢, let Uy = {C' | i € w,t = ¢; € C}. Then U is
clearly open. For density, let C' be a condition. Pick any ¢ € w \ supp(C'). Then
C U{t = ¢;} is a condition in U;. If 7 meets U; for all ¢, then Az satisfies the
property in the statement, so this set of ideals is enforceable. O
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Suppose 7 is an ideal such that Az is complete and for all closed £'-terms
t there exists ¢ € w such that t = ¢; € Az. Let N = T U Az. Then the
subset {cV | i € w} is L'-closed, so it is the domain of an L’-substructure
Mz C N. Since TU Az is a V-theory, M =T U Az. And since Az is complete,
Az = Diag(Mz). We call Mz the compiled model corresponding to Z.

We have shown (Lemmas and that it is enforceable that 7 has a
compiled model. Given a property P of countable structures, we can now write
“P is enforceable” as shorthand for “the set of all ideals Z such Z has a compiled
model Mz and M7z satisfies P is enforceable”.

Theorem 7.15. Let T be an inductive theory. In model-theoretic forcing with
respect to Ty, it is enforceable that the compiled model is an EC model of T.

Proof. By Lemma6.36] every EC model of Ty is an EC model of T'. So it suffices
to show that it is enforceable that the compiled model (which is automatically
a model of T) is an EC model of Ty.

Let ¢(z) be an I-formula and let ¢ be an assignment of x to the constant
symbols. Recall the notation Contg from Lemmam Define

Uyey = {C | Ty UC = ¢(c) or there is 9 (z,y) € Cont:‘g\’ and constants d
such that Ty U C' = ¢(c,d)}.

Then Uy is clearly open. For density, let C' be any condition, and suppose
M = Ty uC. Embed M in an EC model N = Ty U C. Since N is EC, by
Lemma either N = ¢(c) or N | ¢(c,e) for some e € NY and ¢(z,y) €
Contgv.

If N E ¢(c), write p(z) in normal form as \/f:1 Fyipi(w,yt), where ; is
a conjunction of literals. Then of the disjuncts Jy’p;(c,y?) is true in N. Let
b € N¥ be witnesses to the quantifiers, so N | ¢;(c,b). Now pick ¢’ to be
an interpretation of y' in the constant symbols outside of supp(C), and let
C" = CU{x(c,c) | x a conjunct of ;}. Then C” is a condition in U, since
TyUul = p(c).

If N = ¢(c,e) with ¢ € Contg\’, we can use similar reasoning to build a
condition in U, (. extending C.

Now if 7 is an ideal meeting Uy, for all ¢(c), the compiled model Mz will
have the property that for any 3-formula ¢(x) and any ¢ € M?, either M | ¢(c)
or M = (¢, d) for some ¢(z,y) € Contgv and some constants d. Thus Mz will
be an EC model of T, by Lemma [6.42} O

I’ll end this general discussion of model theoretic forcing with a comment
about the connection to set theoretic forcing. Set theoretic forcing starts with a
poset (P, <) whose elements are called conditions. This generalizes our (C, C),
although the usual convention in forcing is that the poset is upside-down: if
p < q, then p is the “stronger” condition. As a result, set theorists talk about
filters on P, rather than ideals.

A filter is called generic if it meets every dense open set in the poset. The
Rasiowa—Sikorski lemma shows that for any countable collection of dense open
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sets, there is a filter meeting all of them, but there may be no generic filter.
However, set theoretic forcing starts with a model V' of set theory and builds a
new universe of set theory V[G] containing a V-generic filter G on P, i.e., one
which meets every dense open set present in V.

If T is an inductive theory and we carry out set theoretic forcing with our
poset (C, C) relative to Ty, we have shown that V[G] will contain a compiled
model M which is an EC model of T' (and much more). This “generic model”
may or may not be isomorphic to a structure in V', but we can view its properties
as “generic properties” of models of T'. For this reason, properties of EC models
of T (e.g., the axioms of the model companion, if it exists) are often called
“generic” properties relative to T'.

7.4 Omitting types and prime and atomic models

In this section, we will use the machinery of model-theoretic forcing to build
models that omit (i.e., fail to realize) certain types. We return to our setting of
a complete theory T with infinite models in a countable language L.

Let p(x) € S.(T) be a complete type. We say that p is isolated if there
is a formula ¢(z) such that ¢(x) € p(x), and for every formula ¢(x) € p(x),
T =V (p(z) — ¥(z)). In other words, ¢(z) completely determines the other
formulas in p(x), so p(z) is the only complete type in S, (T) containing ¢(x).

The reason for the name is that p is an isolated point in the topology on
Sz(T'). The basic clopen set [¢] = {g € S.(T) | ¢ € q} contains only p.

Example 7.16. An example of an isolated type relative to ACFy is tp(i/9),
which is isolated by the formula 22 + 1 = 0. In general, for any irreducible
polynomial p € Q[z], p(z) = 0 isolates a type.

For another example, if T is DLO, there is only one type in S1(7'), so this
type is isolated (by = x). There are three types in S3(T'), isolated by the
formulas x1 < 2, x1 = T2, and x1 > xo.

Proposition 7.17. Let p € S,.(T) be an isolated type. Then p is realized in
every model of T'.

Proof. Suppose p is isolated by p(z), and let M =T be any model. Since p is
satisfiable, we can pick some realization b € N* of pin N =T. Then N |= ¢(b),
so N | 3z ¢(z), and since T is complete, M = 3z p(x). Letting a € M* be a
witness, a realizes p in M. O

Conversely, we show that if p € S,(T) is not isolated, then it can be omitted.

Theorem 7.18 (Omitting Types). Let p € S,(T) be a non-isolated type. Then
there exists a countable model M =T such that p is not realized in M.

Proof. Let Lro~ be the Morleyized language constructed in Section @7 which
has an n-ary relation symbol R, for every formula ¢(z1,...,2,). Let T be the
I*-theory which is a definable expansion of T. We consider model-theoretic
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forcing with respect to fv. By Theorem it is enforceable that the ideal 7
has compiled model Mz with Mz =T, so Mz|, ET.

To show that p is not realized in Mz|., it suffices by Theorem to show
that for each of the countably many n-tuples of constants ¢, it is enforceable
that p is not realized on c.

Let U = {C | there is ¥(z) ¢ p(z) s.t. Ry(c) € C}. U is clearly open. For
density, let C' be a condition. The conjunction of the literal sentences in C is
equivalent to an L-formula ¢(c,d) (where d is a tuple of additional constant
symbols from supp(C)). Now the formula Jy p(z,y) does not isolate p(x), so
there is a formula ¢(z) ¢ p(z) such that (3y p(z,y)) A ¢(z) is satisfiable. Let
C"=CU{Ry(c)}. Then C’ is a condition in U.

If T meets U, then in Mz|., cM* satisfies some 1 (z) ¢ p(z), so ¢ does not
realize p(x). O

An atomic model is one that only realizes the types that can’t be omitted.

Definition 7.19. A model M | T is atomic if for all n € w, every type in
Sn(T) realized in M is isolated.

Recall that M | T is prime if for every N | T, there is an elementary
embedding M — N.

Corollary 7.20. Suppose M is a prime model of T. Then M is countable and
atomic.

Proof. By Léwenheim—Skolem, T has a countable model N. Since M embeds
elementarily in N, M is countable.

Now let p € S,,(T') and assume a € M7 realizes p. Assume for contradiction
that p is not isolated. By Theorem there is a countable model N = T
such that p is not realized in N. Let f: M — N be an elementary embedding.
Then f(a) realizes p in N, contradiction. O

If we seek a prime model of 7', it must be atomic. To build an atomic model,
we need to omit not just one type, but all non-isolated types at once.

Under what conditions can we omit a set of types in a single model? it turns
out that the correct analog of a type being non-isolated is a set of types being
nowhere dense.

Definition 7.21. Let S be a topological space. A set X C S is nowhere dense
if for every non-empty open set U C S, X NU is not dense in U. That is, for
every open U C S, there exists a non-empty open V C U such that X NV = &.

You should think of nowhere dense sets as being “very small” in a topological
sense. There is a strong analogy between nowhere dense sense in topology and
null sets in measure theory. Recall that a countable union of sets of measure 0
still has measure 0. It is not true that a countable union of nowhere dense sets
is nowhere dense, but this suggests the following definition.

Definition 7.22. Let S be a topological space. A set X C S is meager if it
can be written as a countable union of nowhere dense sets.
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Note that if p is an isolated point, then p is dense in the open set {p}. On
the other hand, suppose we are in a T} space, so every point is closed (every
Hausdorff space is T7, so this applies to our Stone spaces of types). I claim that
if p is non-isolated, then {p} is nowhere dense. Indeed, if U is non-empty and
open, then V' = U\ {p} is non-empty and open and disjoint from {p}. It follows
that any countable set of non-isolated points is meager.

For example, although Q is dense in R, it is meager, since Q = quQ{q}, a
countable union of nowhere dense singleton sets.

Theorem 7.23 (Improved Omitting Types). For each n € w, let X,, C S, (T)
be a meager set. Then there exists a countable model M =T such that for all
n € w and for all p € X, p is not realized in M.

Proof. We modify the proof of Theorem Fix n € w and write X,, = N,
where N is a countable family of nowhere dense sets. Let Y € N, and let ¢ be
an n-tuple of constants. I claim it is enforceable that tp,(c) ¢ Y.

Let U = {C | Ry(c) € C for some 9 (z) such that for all p(z) € Y, 9 ¢ p}.
U is clearly open. For density, let C' be a condition. The conjunction of the
literal sentences in C' is equivalent to an L-formula ¢(c, d) (where d is a tuple of
additional constant symbols from supp(C')). Consider the open set [Jy p(z,y)]
in S,(T). Since C is satisfiable, this set is non-empty. Since Y is nowhere
dense, there exists a non-empty open set V' C [Jy p(z, y)] such that YNV = @.
Shrinking V', we may assume it is a basic open set [¢)(z)]. Thus [¢(z)]NY = @,
so ¥(x) ¢ p(x) for all p € Y. Since [¢(x)] is non-empty, 1(z) is satisfiable, so
C' = CU{Ry(c)} is a condition in U.

If Z meets U, then in Mz|z, ¢™M7 satisfies some 9(z) such that ¢ ¢ p for all
peY,sotpy(c) ¢Y.

Since there are countably many tuples c, it is enforceable that Mz does not
realize any type in Y. Since there are countably many Y € N, it is enforceable
that Mz does not realize any type in X,,. Since there are countably many n, it
is enforceable that no type in any X, is realized in Mz. O

We say that isolated types are dense relative to 7T if for all n € w, the set
of isolated types is dense in the space S, (7). Translating, this means that for
every non-empty basic open set [p(z)], there is an isolated type p(x) € [¢(z)],
i.e., every satisfiable formula is contained in some isolated type.

Theorem 7.24. T has a countable atomic model if and only if isolated types
are dense relative to T .

Proof. Suppose T has a countable atomic model M. Let ¢(x) be a satisfiable
formula. By completeness, T = 3z ¢(z), so there is some a € M?* such that
M = ¢(a). But then p(x) € tp(a), which is isolated, since M is atomic. Thus
isolated types are dense.

Conversely, suppose isolated types are dense. I claim that for all n € w, then
set N of non-isolated types in S, (T) is nowhere dense (and hence meager).
Indeed, for any non-empty open set U C S, (T), we can find an isolated type
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p € U, so {p} is open and N'N{p} = &. By Theorem there is a countable
model M = T which does not realize any non-isolated type, hence is atomic. O

We showed earlier that a prime model must be countable and atomic. We
now show that the converse is true, and that just like countable saturated mod-
els, countable atomic models are strongly homogeneous and unique up to iso-
morphism.

Theorem 7.25. Suppose M =T is a countable atomic model. Then:
(1) M is prime.
(2) M is unique up to isomorphism.

(3) M is strongly homogeneous: If a,a’ € M* such that tp(a) = tp(a’), then
there is an automorphism f: M — M such that f(a) = d'.

Proof. For (1), we go forth. Let N = T. Enumerate M as (m;);c,. Let fo be
the empty function, which is partial elementary M --+ N because T is complete.

We define a partial elementary map f; with domain 4; = {mg,...,m;_1} for
each i € w by recursion. Given f;, consider p = tp(mg,..., m;). Since M is
atomic, p(x) is isolated by some formula ¢(zo,...,z;).

Since M = Jz;o(mg,...,m;—1,2;) and f; is partial elementary, also N =
Az 0(fi(mo), ..., filmi—1),z;). Define f;11(m;) to be any witness, so N =
o(fir1(mo), ..., fixr1(m;)). Since @ isolates the complete type p relative to T,
(fi+1(mo), ..., fix1(m;)) satisfies p, so f;y1 is partial elementary.

The union f = J,c,, fi is an elementary embedding M — N.

For (2) and (3), we only have to modify the proof of (1) to go back and
forth, just as in the proof of Theorem [7.8 O

To recap, we have proved the following result, characterizing the existence
of prime models by a condition on the type space.

Corollary 7.26. The following are equivalent, for a complete theory T in a
countable language:

(1) Isolated types are dense.
(2) T has a countable atomic model.

(8) T has a prime model.

Proof. Corollary [7.20] Theorem [7.24] and Theorem O

Note that we also proved something stronger: If M = T is countable, then
M is prime if and only if M is atomic, and this M is unique up to isomorphism.
This is better than the situation with universal and saturated models: Every
countable saturated model is universal, countable saturated models are unique
up to isomorphism if they exist, and the existence of a countable universal model
implies the existence of a countable saturated model, but 7" may have countable
universal models which are not saturated.
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All of our results on prime and atomic models used strongly the assumption
|£] < Vg (which was necessary for the omitting types theorem). In an uncount-
able language, a theory may have a prime model which is not atomic or an
atomic model which is not prime, and prime and atomic models need not be
unique up to isomorphism.

Corollary 7.27. Suppose T' has a countable universal model. Then T has a
prime model.

Proof. By Theorem [7.10} T is small. For all n € w, let
N, = {p(z) € Sp(T) | p(x) is non-isolated}.

Then since |S,(T)| < R, we have |N,| < Rg, so P, is meager in S, (T) (being
a countable union of non-isolated singleton sets). By Theorem T has a
countable atomic model, and hence a prime model by Corollary [7.26] O

7.5 Ny-categorical theories

We will now characterize the theories in which prime and universal models coin-
cide. These are the Ny-categorical theories, which have a unique countable model
up to isomorphism. This theorem is often called the Ryll-Nardzewski theorem,
and additionally attributed to Engeler and Svenonius, all independently.

Theorem 7.28 (Ryll-Nardzewski). The following are equivalent:

(1) T is Wg-categorical, i.e., T has a unique countable model up to isomorphism.
(2) FEvery countable model of T is saturated.

(8) T has a countable model which is both universal and prime.

(4) FEvery countable model of T is atomic.

(5) For alln € w, every type in S, (T) is isolated.

(6) For allm € w, S, (T) is finite.

(7) For all n € w, there are finitely many formulas in context x = {x1,...,2,}
up to T-equivalence.

Proof. (1) = (2): Let M be the unique countable model of T. Let n € w. Then
every type in S, (T) is realized in a countable model of T, and hence in M.
Thus |S,(T)] < Rg. Then T is small, so it has a countable saturated model by
Theorem [7.10] By Ng-categoricity, every countable model is saturated.

(2) = (3): Since T has a saturated countable model, it has a countable
universal model, so by Corollary T has a prime model M, which must be
countable. By (2), M is also saturated, hence universal.

(3) = (4): Let M = T be countable, universal, and prime. Let N = T
be a countable model. T claim that N is atomic. For any N’ = T countable,
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we can pick an elementary embedding f: N — M (since M is universal) and
an elementary embedding g: M — N’ (since M is prime), so go f: N — N’
witnesses that N is prime. Thus N is atomic by Corollary [7:20]

(4) = (1): Since atomic models are unique up to isomorphism by Theo-
rem if every countable model is atomic, T is Rg-categorical.

(4) & (5): Let n € w and p € S,(T). Then p is realized in some countable
model M = T. By (5), M is atomic. So p is isolated. Conversely, if every
type is isolated, then every model realizes only isolated types, so every model is
atomic.

(5) & (6): By Lemma ??, S,(T) is a compact Hausdorff space, and any
compact Hausdorff space is finite if and only if it is discrete.

(6) < (7): If there are k formulas in context z up to T-equivalence, then
|S.(T)| < 2k, since a type is a set of formulas, and complete types are closed
under T-equivalence (Lemma . Conversely, if ¢ and 1 are not T-equivalent,
then by Lemma [7.1] [p(z)] # [¢(z)] in S5(T). If [S4(T)| = k, then the number
of formulas in context x up to T-equivalence is bounded above by the number
of subsets of |S,.(T)|, which is 2¥. O

Here are two example applications.

Corollary 7.29. Suppose T is a complete theory in a finite relational language.
If T has quantifier elimination, then T is Rg-categorical.

Proof. In a finite relational language, there are only finitely many atomic for-
mulas in context x for any finite . Then the number of boolean combinations of
such formulas, up to equivalence, is finite (at most 22k, when k is the number of
atomic formulas). Since T has quantifier elimination, every formula in context
z is equivalent to a boolean combination of atomic formulas. By Theorem [7.28]
T is Ng-categorical. O

Example 7.30. DLO is Ng-categorical, since it has QE in a finite relational
language.

The more concrete way to prove Ng-categoricity of DLO is to use a back-
and-forth argument to construct an isomorphism between any two countable
models (this is due to Cantor!). Note that this is hidden in our argument: The
finiteness of the type spaces implies every countable model is atomic, and we
obtained Wy-categoricity by uniquness of atomic models using back-and-forth.

Example 7.31. Let K be an infinite field. Then T' = Th(K) is never Ng-
categorical. Indeed, by compactness we can find an elementary extension K <
K’ containing an element « which is transcendental over the prime field. It
follows that the powers a,a?,a3,... are all distinct (otherwise o would be
a root of the polynomial ' — 27 for some i # j). But then the formulas
{y = 2™ | n € N} are pairwise non-T-equivalent, since y = x™ is the only one
which is satisfied by (o™, a)). By Theorem T is not Ny-categorical.

We have now completed our classification of complete theories with infinite
models in countable languages, according to the existence of prime and universal
models, in terms of the topology and cardinality of the type spaces S, (T):
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e S, (T) is finite for all n < every type in S, (T') is isolated for all n: T is No-
categorical, and the unique countable model is both prime and universal.
Example: DLO.

e S, (T) is countable or finite for all n, and S, (T) is infinite for some n: T
has both a prime and a universal model, and these are different. Example:
ACF\, see Example

e Isolated types are dense, and S, (T) is uncountable for some n: T has
a prime model but no universal model. Example: Th(Q; <, (¢)qeq), see

Example [7.33]

e Isolated types are not dense: T has neither a prime model nor a universal
model. Example: Th(2¥; (R;,)new), see Example [7.34]

Example 7.32. A countable algebraically closed field of characteristic 0 is
determined up to isomorphism by its transcendence degree over Q, which can
be finite or countably infinite. So, up to isomorphism, the countable models of
ACFy are

Q C Q(to) € Q(to, t1) C -+ C Qlto, t1,t2,...)

The field of countable transcendence degree is the countable saturated and uni-
versal model, while the field Q of algebraic numbers is the atomic and prime
model.

Example 7.33. Let T = Th(Q; <, (¢)4eq), the theory of the rational order
with a constant naming each element. By quantifier elimination, a type p(z) in
one variable z is determined by the formulas of the form x = ¢, x < ¢, and ¢ < =
in p(x), for ¢ € Q. In particular, for every g € Q, there is a type pq(z) isolated
by the formula x = ¢q. And for every downwards-closed set L C Q, there is a
non-isolated type pr(x) which contains {¢ <z |g€ L}U{z <q|q¢ L}.

Since there is one cut in QQ for every real number, T is not small, so it does
not have a countable saturated model. But the isolated types (in this case, the
types corresponding to the constant symbols) are dense, and T" has an atomic
model, namely Q.

Example 7.34. Let £ = ((Ry)new), where each R,, is a unary relation sym-
bol. Consider the L-structure C' with domain 2“, the set of all infinite binary
sequences (equivalently the Cantor space), such that RS is the set of all se-
quences such that the n'" term is 1. Let T = Th(C).

It is possible to show that T has quantifier elimination, so a complete type
p(z) in one variable z is determined by the set {n | R,(z) € p(x)}. It follows
that S, (7T") is homeomorphic to the Cantor space 2¢. This space has no isolated
types. So T has no countable saturated model and no countable atomic model.

A countable model realizes only countably many types in S, (7'), and we can
use the improved omitting types theorem to build a countable model omitting
the types in any meager subset of the Cantor space S, (7).
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7.6 The number of countable models

Given a theory T and a cardinal x, we write I(T, ) for the number of models of
T of cardinality x, up to isomorphism. We will focus here on k = Ny, retaining
our countable language hypothesis.

Note that every countable model is isomorphic to one with domain w. Each
n-ary relation symbol has at most 28 = 2%0 interpretations on w, and each
n-ary function symbol has at most Ngg = 2%0 interpretations on w. So the
number of countable models of T" up to isomorphism is at most the number of
L-structures with domain w, which is at most [, 280 = (2%0)®o = 2%o,

What are the possible values of I(T,Rg)? Here is a summary of what we
know so far:

e Any Rg-categorical theory T has I(T,Rg) = 1.
e It is possible to have I(T,Rg) = Ry. For example, take T'= ACFy.

e If T is a theory with S, (T) = 2% for some n, such as the theories in
Examples and then I(T,Ng) = 2%, This is because every type
is realized in some countable model, but any countable model can only
realize countably many types.

Here is an example showing that (T, Rg) can be finite but not 1.

Example 7.35. Let T = Th(Q; <, (¢4 )new), where the constant symbol ¢, is
interpreted as the natural number n. Then T can be axiomatized by the theory
of dense linear orders without endpoints, together with axioms ¢, < ¢, when
n < m. It is an exercise to show that these axiomatize a complete theory.

Now T has exactly 3 countable models up to isomorphism:

1. Atomic: The sequence (c,) has no upper bound. Any such model is
isomorphic to (Q; <, (¢n)new), where lim,,_, o ¢, = 00.

2. Saturated: The sequence (c¢,) has an upper bound, but no least up-
per bound. Any such model is isomorphic to (Q; <, (¢p)necw), Where
lim,, o0 ¢ = 7.

3. Neither atomic nor saturated: The sequence (¢;,,) has a least upper bound.
Any such model is isomorphic to (Q; <, (¢p)new), where lim, o, ¢, = 1.

One can modify the previous example to find complete theories T with
I(T,Xg) = n for all n > 3. Curiously, the case n = 2 is impossible. It’s
worthwhile keeping Example [7.35] in mind while working through the proof.

Theorem 7.36 (Vaught). There is no complete theory T with exactly two count-
able models up to isomorphism.

Proof. Let T be a complete theory, and assume for contradiction that 7' has
exactly two countable models up to isomorphism. Since every type is realized
in one of these two models, T is small, so T" has a countable saturated model
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M; (by Theorem and a countable atomic model My (by Corollary .
Since T is not Ng-categorical, by Theorem there is some context n € w and
some non-isolated type p(z) € S,(T). This type is realized in M; but not in
My, so My % M;. Our goal is now to find a third model of T'.

Let a € M7 be a realization of p, and consider the expanded language L(a)
by new constants naming the elements of a. Let Mj(a) be the expansion of M;
to a L(a)-structure, and let T'(a) = Thz(q)(M1(a)).

Now M;(a) is still a countable saturated model of T'(a), because any L(a)-
type over a finite set B C Mj(a) is an L-type over the finite set B U a, and
hence is realized in M;. So T'(a) is small, and hence it has a countable atomic
model M /5(a).

T(a) is not Rp-categorical by Theorem since any infinite family of £-
formulas which are pairwise not T-equivalent remain not 7T'(a)-equivalent when
viewed as L(a)-formulas. So there is some m € w and some non-isolated type
q(y) € Sm(T(a)), which is omitted in M 5(a).

Let M5 be the reduct of M 5(a) to £. Then M;, realizes p(x) (by o’ =
a™1/2), s0 it is not isomorphic to My. It is clear that M 5(a) 2 Mi(a), but we
need to show M, /o % M;. Note that M/, omits ¢(y), viewed as a type over the
finitely many parameters a’. Suppose for contradiction that f: My, — M, is
an isomorphism. Then M; omits f.q, which is a complete type over f(a') € M7,
contradicting the saturation of Mj. O

Returning to theories with infinitely many countable models, we have seen
examples where I(T,Xg) = R and I(T,Xg) = 2%. Those interested in set
theory will wonder about the possibility of cardinals between Xy and 2%°.

Conjecture 7.37 (Vaught). There is no theory T such that
Rg < I(T,Rg) < 2%,

Vaught’s conjecture is one of the oldest open problems in model theory.
Note that if we assume the continuum hypothesis, it is trivial, since there are
no cardinals between Xy and 280 = X;. The question is whether it is possible to
prove Vaught’s conjecture from the axioms of ZFC.

Using tools from descriptive set theory, Morley came close to settling the
conjecture.

Theorem 7.38 (Morley). There is no complete theory T' such that
Ny < I(T,Rg) < 2%,

In light of the theorems of Vaught and Morley, the possibilities for I(T,Rg)
when T is complete are: 1,3,4,5,...,Rg, R, 2% And Vaught’s conjecture con-
cerns the open case of Nj.

In the discussion above, we have only considered I(T, k) for K = Rg. The
case of uncountable k is a whole other story, beginning with another theorem
of Morley’s (the categoricity theorem) and extended by Shelah in his landmark
book Classification Theory.
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