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Lecture 1: Ages, rich and homogeneous limits

Countable homogeneous structures occupy a beautiful corner of mathematics,
which lies at the heart of connections between model theory, combinatorics,
descriptive set theory, and permutation group theory.

Here is a brief sketch of how these connections go: Given a class K of finite (or
finitely generated) structures, we study the space of countable IC-limits, which
are countable structures “built from” the structures in K. Among all K-limits,
we identify limits with special model-theoretic properties — in the best case, we
find a homogeneous IC-limit M, also called the Fraissé limit of K. Homogeneity
implies that the permutation group Aut(M) is rich and reflects the structure of
the original class K.

In these lectures, we cover the following topics:

e Classical Fraissé theory.

e Strengthenings of amalgamation, and connections to model-theoretic prop-
erties.

e Zero-one laws and pseudofiniteness of Ng-categorical theories.
e Universal and generic limit structures when no Fraissé limit exists.

Two excellent general references on Fraissé theory and homogeneous struc-
tures are Macpherson’s A Survey of Homogeneous Structures and Cameron’s
Oligomorphic Permutation Groups.

We begin by establishing some conventions. “Countable” means finite or
countably infinite (< Rg). L is always a countable language. “Structure” means
L-structure for some fixed countable language £. We allow empty structures.

If A and B are structures, A C B means that A is a substructure of B.
f: A — B means f is an embedding A — B. If A C B, we always have
the inclusion embedding inc: A — B. We write Emb(A, B) for the set of all
embeddings A — B.

A structure A is finitely generated (f.g.) if there exist a4, ...,a, € A such
that A = {a1,...,ay), i.e., A has no proper substructure containing ay, ..., a,.



A Ctp. B means that A is a f.g. substructure of B. Since £ is countable, every
f.g. structure is countable. If A is f.g., then every embedding f: A — B is
determined uniquely by the values f(ai1),..., f(a,). Thus, when A is f.g. and
B is countable, Emb(A, B) is countable.

Note that if £ is relational (i.e., £ contains only relation symbols), then a
structure is f.g. if and only if it is finite.

Definition 1.1. Let M be a countable structure. The age of M is
Age(M)={A| Aisfg,and 3f: A — M}.

The terminology “age” is due to Roland Fraissé. In Fraissé’s terminology, a
structure M is younger than a structure N if Age(M) C Age(N).

It follows immediately from the definition that Age(M) is closed under iso-
morphism: if A € Age(M) and A = B, then B = Age(M). Since for any
embedding f: A — M with A f.g., A= f(A) Cs,. M, we could have equiva-
lently defined Age(M) as the isomorphism-closure of {A | A Cp, M},

Definition 1.2. Let K be any class of f.g. structures. A structure M is a
K-limit if M is countable and Age(M) C K.

Which classes of f.g. structures are ages? The following theorem character-
izes these classes. We will take some time proving it in detail, since it illustrates
the ideas of the more complex constructions that will occupy us later.

Theorem 1.3. Let K be a class of f.g. structures. There exists a countable
structure M such that K = Age(M) if and only if:

(1) K is non-empty and countable up to isomorphism: 1 < |K/2| < Rg.

(2) K has the hereditary property (HP): If A — B, A is f.g., and B € K,
then A € K.

(8) K has the joint embedding property (JEP): If A,B € K, then there
exists C € K and embeddings f: A — C and g: B — C.

Definition 1.4. We say K is an age if it satisfies the condition in Theorem [1.3
K is non-empty and countable and has HP and JEP.

Note that HP implies that K is closed under isomorphism: If A & B, then
A< Band B A, so A€ K if and only if B € K. Many sources define HP
in a weaker form: if A C¢, B and B € K, then A € K. This property, together
with isomorphism-closure, is equivalent to our formulation of HP.

Example 1.5. (1) Ko = finite linear orders. Kio is an age. In fact, every
countably infinite linear order L has Age(L) = Kro.

(2) K¢ = finite graphs. K¢ is an age. Every countable graph is a IC-limit, but
not every countably infinite graph G has Age(G) = Kg. For example, if G
is bipartite, then the triangle graph A is not in Age(G). Letting R be the
random graph, Age(R) = K¢. Even easier, if we let G be the disjoint union
of all finite graphs (up to isomorphism), then Age(G) = K¢.



(3) Kgelas = finite fields. Kgengs is not an age, because it fails JEP: no two fields
of different characteristics embeds in a common field. But for a fixed prime
P, Kfelas,p = finite fields of characteristic p is an age. Kgelasp = Age(F,),
where F,, is the algebraic closure of the prime field F,,.

(4) For us, a tree is a connected acyclic graph. Kiees = finite trees is not an
age, because it fails HP: a substructure of a tree need not be connected. A
forest is an acyclic graph. Every forest is a disjoint union of trees, namely
its connected components. Kgoests = finite forests is an age. Note that
Ktorests 1s the hereditary closure of Kipees-

(5) The condition that X is countable up to isomorphism is automatic in the
case that £ is a finite relational language, since there are only finitely many
L-structures of size n up to isomorphism for each n € w. However, this
condition can fail in general.

(a) If £L = {P;, | i € w}, with each P, a unary predicate, then there are
2%0_many non-isomorphic £-structures of size 1.

(b) It is a fact that there are 2%°-many f.g. groups up to isomorphism. In
fact, there are already 2%°-many non-isomorphic groups generated by 2
elements.

(c) Let £ = {P, f}, where P is a unary relation symbol and f is a unary
function symbol. For each binary string s € 2%, we can make N into an
L-structure N, by setting f(n) = n+1 and P(n) iff s(n) = 1. Note that
Ny = (0). This gives 2%-many non-isomorphic £-structures generated
by a single element.

Before proving Theorem we isolate the following lemma, which will be
useful later.

Lemma 1.6. Assume KC has HP. Then M is a KC-limit if and only if there exists
a chain of embeddings
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with each A; € K such that M = hglAZ

Here lim A; is the direct limit (or the directed colimit, in category-
theoretic terminology) of the chain of embeddings. If we assume each f; is an
inclusion 4; C A;1 (which we can always do, at the cost of replacing each A;
by an isomorphic copy), then this is just the union hﬂAi = U,eco Ai-

Proof. Assume M is a K-limit. Since M is countable, enumerate M = (m;);eq,-
Let A; = (mo,...,m;—1) Cte M. Then each A; € Age(M) C K. We have
AOgAl QAQ g, andM:UKwAi%liglAi.

Conversely, assume M = lim A; for some chain of embeddings with each

A; € K. Each A; embeds in M with image A;. We have Aj C A} C A, C ...,



and M = J,,, Aj. Since K is closed under isomorphism (by HP), each A € K.
Since each A is f.g., A} is countable, so M is countable.

Suppose B € Age(M), and let g: B < M. let by,...,bx be generators for
B. For each 1 < j < k, there exists ¢ € w such that g(b;) € A}. Let N be
large enough so that b; € Ay for all 1 < j < k. Then g(B) C AYy, and we have
g: B— Aly. By HP, B € K. Thus M is a K-limit. O

Now we return to prove our theorem characterizing ages.
Proof of Theorem[I.3 Assume K = Age(M).

(1) M has at least one f.g. substructure, namely (&), so K is non-empty. For
all A € Age(M), there exists f: A — M, so A= f(A) C¢,. M. But since
M is countable, {B | B C¢,. M} is countable, so K/ is countable.

(2) Suppose f: A — B, Ais fg., and B € Age(M). Let g: B < M. Then
gof:A— M,so A€ Age(M). Thus Age(M) has HP.

(3) Suppose A, B € Age(M). Let f: A — M and g: B — M. Let C =
(f(A)Ug(B)) Ctg. M. Then C € Age(M) and f(A) C C and g(B) C C,
so f: A— C and g: B < C. Thus Age(M) has JEP.

Conversely, suppose K satisfies the three conditions in the theorem. By (1), let
(A;)icw be isomorphism representatives for K (listed with repetitions if K/2 is
finite). We build a chain of embeddings in K by recursion.

B fo By f1 B, f2
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Let By = Ag. Given B;, by JEP there exists some B;+1 € K with embeddings
fi: B, — Bi+1 and gi+1: Ai+1 — Bi+1- Let M = 1i B;. By Lemma

and HP, M is a K-limit, i.e., Age(M) C K. Conversely, let A € K. Then
A= A; for some i < w. We have A =2 A; — B; < M, so A € Age(M). Thus
Age(M) = K. O

Among all possible K-limits, we are interested in certain very rich ones (in
various senses).

Definition 1.7. Let K be an age. A K-limit M is:

e [C-rich if for all f: A — M and g: A — B with A, B € K, there exists
h: B < M such that hog = f.




e K-homogeneous if Age(M) = KC and for all A, A" C¢, M and f: A= A’
an isomorphism, there exists o € Aut(M) such that o|4 = f.

e /[C-universal if every K-limit embeds in M.

If the class K is clear from context, we drop the prefix and simply write rich,
homogeneous, and universal. K-homogeneous structures are sometimes called
ultrahomogeneous, to distinguish this notion from other notions of homo-
geneity in model theory.

Lemma 1.8. If K is an age and M is a rich IC-limit, then Age(M) = K.

Proof. Since M is a K-limit, Age(M) C K. Conversely, let A € K, and let
E = (@) Cto. M. By JEP, there exists some B € K and embeddings f: A — B
and g: E < B. By richness (applied to g), there exists h: B < M. Then
hof: A< M,so A€ Age(M). O

Closely related to the above proof is the fact that JEP implies that IC contains
exactly one structure generated by @ up to isomorphism.

Example 1.9. Note that we include the condition Age(M) = K in the definition
of K-homogeneous. Recall that g is the class of all finite graphs. Let C,, be
the complete graph on w. Then C,, is a Kg-limit, and it is homogeneous (for its
age, Age(C,) = the class of all finite complete graphs). But by our definition,
it is not Kg-homogeneous.

Definition 1.10. Let A C B. We say B is a one-point-extension of A if
there exists b € B such that B = (AU {b}).

Lemma 1.11. A K-limit M is rich if and only if for all one-point-extensions
A C B with A,B € K and f: A — M, there exists g: B < M such that

gla=1Ff.

Proof. One direction easy, since this condition is a special case of richness. In
the other direction, suppose we have f: A< M and g: A — B with A, B € K.
Then g(A) C¢g. B. Let by,...,b, be generators for B, and for 0 < ¢ < k, let
B; = (g(A) U {b1,...,b;}). Note that By = g(A), Bx, = B, and for each B;;1,
either B;1 = B; or B;11 is a one-point extension of B;.

We build a sequence of embeddings h;: B; < M by recursion. Let hg =
fogt:g(A) — M, and note that hgog = f. Given h;: B; < M, by our
assumption we can find h;yq1: Biy1 < M such that h;1]|p, = h,. Finally, we
have hy: B — M, and hk|g(A) = hg, so hy o g = f, as desired. O

Example 1.12. The rational order (Q, <) is Kpo-rich. Indeed, let A C B
be a one-point extension of finite linear orders, and let f: A — Q. Suppose
A={a; <as < - < ay}, and let b be the unique element of B\ A. If n =0
(i.e., A = @), we can map b to any element of Q. If b < a;, then we can extend
fbyb— f(a1)—1€Q. If b > a,, then we can extend f by b +— f(a,)+1€ Q.
If a; < b < ajt1, then we can extend f by b — (f(a;) + f(ai+1))/2 € Q.



Note that the only facts that we used about Q are that it is non-empty,
dense, and has no greatest or least element. The same argument shows that
any countably infinite dense linear order without endpoints is a rich Kr,o-limit.

Conversely, any rich Kpo-limit L must be a countably infinite dense linear
order without endpoints. For example, for any a < @’ in L, we can extend the
substructure A = {a < @’} to B = {a < b < a’}. By richness, B embeds in L
over A, so there is some b’ € L such that a < V' < a’.

Theorem 1.13. Let M and N be rich K-limits. Suppose A Crg. M and B Cy g,
N and f: A= B is an isomorphism. Then there is an isomorphism p: M = N
such that p|a = f.

Proof. Since M and N are countable, we can enumerate them as M = (m;);ey
and N = (n;)ie,- We define a sequence of isomorphisms f;: 4; & B; with
A; Ctg. M and B; Cr . N such that for all ¢, f C fi € fiy1, miy € Agiqq, and
n; € BQ¢+2.

Set Ao = 147 BO = B, and fo = f

At odd stage 21+ 1, given fgil Agi = Bgi, let A2i+1 = <A22 U {ml}> gf.g_ M.
Since M is a KC-limit, Ag;, Ag;11 € K.

A2i+1 inc

Aoy T> Boy;

By richness of N, there exists fo;11: Ag;+1 < N such that fo;11]4,, = foi, €.,
f2i € fait1. Let Baiy1 = foiv1(A2it1), 50 foip1: Agip1 = By
At even stage 2i + 2, the construction is similar, but we go “back”, using
fz_i}rl: Boit1 = Agiy1 and Bai1o = (Bg;+1 U {n,}), and applying richness of M.
Finally, we have (J;c,, Ai = M, U;c,, Bi = N, and ¢ = U, fi: M = N,
with ¢|a = f. O

The proof of the theorem is a classic “back-and-forth” argument. In fact, the
back-and-forth method was originally devised to prove essentially this theorem
in the special case of dense linear orders without endpoints. Although Cantor
was the first to prove (in 1895) that any two countably infinite dense linear
orders without endpoints are isomorphic, and the back-and-forth method is often
attributed to him, his proof actually only went “forth” and used a completely
different argument to show the constructed embedding was surjective. The first
true back-and-forth proofs in the literature seem to be by Huntington (1904)
and Hausdorff (1914). The general version of the theorem, for rich K-limits, is
due to Fraissé (1953).



Corollary 1.14. Let M be a K-limit. Then M is rich if and only if M is
homogeneous. Moreover, if M and N are both rich/homogeneous, then M = N.

Proof. Suppose M is rich. Then Age(M) = K by Lemma Let A, A" Ce g M
and f: A= A’ an isomorphism. By Theorem there is 0 € Aut(M) such
that 0|4 = f. So M is homogeneous.

Conversely, suppose M is homogeneous. Let f: A <— M and g: A < B with
A, B € K. Since Age(M) = K (this is part of the definition of X-homogeneous),
B € Age(M), so there exists h': B — M. We may not have b’ o g = f, but
there is an isomorphism ¢: (k' o g)(A) — f(A) such that p o h’ o g = f. By
homogeneity, this isomorphism extends to an automorphism o € Aut(M). Let
h=coh': B— M. Wehave hog=0oh'og=¢poh’og=f.

Finally, suppose M and N are both rich -limits. Pick some A € K. Since
Age(M) = Age(N) = K by Lemma there are embeddings f: A — M and
g: A<= M, and f(A) = A= g(A). By Theorem [[.13] M =~ N. O

Lecture 2: Fraissé limits

Definition 2.1. By Corollary if IC has a rich or homogeneous limit M,
then M is both rich and homogeneous, and it is unique up to isomorphism. We
call such a structure M the Fraissé limit of K. We usually denote the Fraissé
limit of K by M.

Fraissé limits also satisfy our third richness property, universality. The proof
of this is easier, since we only need to go “forth”.

Theorem 2.2. Suppose K has a Fraissé limit M. Then My is K-universal.

Proof. Let N be a K-limit. By Lemma we can write N = lim A; for a chain
of embedding f;: A; — A;y1 with each A; € K. Since Age(My) = K, there is
an embedding go: A9 — M. Given an embedding g;: A; — My, by richness
there is an embedding g;11: A;+1 < My such that g;11 o f; = g;.

fo fi f2

A, N

|

My
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Since N = @Ai, these coherent embeddings (g;)ie,, induce an embedding
g: N — M. O

Example 2.3. The converse to Theorem does not hold. For example, the
linear order Q U {oo} is universal, since every countable linear order already
embeds in Q. However, it is not homogeneous, since although the substructures
{0} and {oo} are isomorphic, there is no automorphism moving the greatest
element oo to 0.

More generally, if N C M are -limits and N is universal, then M is uni-
versal. But if IV is a Fraissé limit, M is typically not a Fraissé limit.



Example 2.4. Less trivially, there are classes K which admit a universal -
limit but no Fraissé limit. Take, for example, the class Korests Of finite forests,
defined in Example (4) It is easy to see that every countable tree embeds
in the complete countably branching tree 7. Since every countable forest is a
disjoint union of countably many countable trees, every countable forest embeds
in the forest F formed as the disjoint union of countably many copies of T, and
F is universal for Kiorests- INote, however, that if we add a new vertex to F
which is connected to the root of each copy of 7, we obtain a tree isomorphic
to 7. Thus 7 is also universal for Keyrests-

On the other hand, Kiorests has no Fraissé limit. Indeed, suppose for con-
tradiction that M were a Fraissé limit. The path of length 3 embeds in M:
e —e—o—e. Let A be the substructure of M containing the endpoints of this
path: A= {a,d'} in a — e — e —a’. Note that A is a structure consisting of two
disconnected vertices. Now consider the extension A < B where Bisa—e—a/.
Since B embeds in M over A, M contains both a path of length 3 and a path of
length 2 from a to a’. But this creates a cycle of length 5 in M, contradicting
the fact that M is acyclic.

Theorem 2.5. Let IC be an age. Then KC has a Fraissé limit if and only if KC has
the amalgamation property (AP): For all fi: A — By and fo: A < Bs,
there exists C' € IC, g1: By — C, and go: Bs — C such that g1 o f1 = g2 0 fs.

By
V < 92
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Proof. Suppose first that K has a Fraissé limit M. For AP, let f;: A — B; and
fa: A — By with A, By, B € K. Since By € Age(My), there is g;: By < M.
Then we have (g1 0 f1): A — My and fo: A — Bs. By richness, there exists
go: Bos — My such that goofy = g10f1. Define C = <gl(Bl)Ugg(BQ)> Crg. My,
so C' € K and we have ¢g;: By < C and go: By — C.

Conversely, suppose K has AP. Let (Ag)rew be an enumeration of the struc-
tures in KC, up to isomorphism. We modify the proof of Theorem to build a
rich K-limit, building a chain of embeddings f;: B; < B;y1 with each B; € K
and defining M = ligBi. Note that if ¢ < j, there is an embedding f; ;: B; —
B;, obtained by composing along the chain.

A task is an embedding g: C' — Aj, where Ag is one of our isomorphism
representatives for K and C' C¢ o B; for some 7 < w.

We will list the tasks by pairs in w X w. We define tasks (¢, j) for all j € w
at the end of stage ¢ of the construction, as follows: Having defined B;, consider
all the tasks g: C — Ay, with C' C¢, B; and k € w. Since B; is countable, there
are countably many C C, B;, there are countably many Ay, and Emb(C, Ay)



is countable. Thus there are countably many such g, and we can enumerate
them as (g;);ew. Let task (i, ) be g;.

Fix a bijection ¢: w — w X w such that t(n) = (i,7) with ¢ < n for all n
(this ensures that task ¢(n) has already been defined at stage n+1). The usual
“diagonals” bijection, which enumerates wxw as (0,0), (0, 1), (1,0), (0,2), (1, 1),
(2,0),...works. We will complete task t(n) at stage n + 1 of the construction.

At stage 0, pick any By € K. Then we define tasks (0,5) for j € w, as
described above.

At stage n+1, we are given B,,, and we seek to construct B,,4+1 and complete
task t(n) = (i,7) with ¢ < j. This task is an embedding g: C — A, where
C Ctg B;. By composing the inclusion C' — B; with f;,: B; — B,, we
obtain f: C'— B,. Applying AP to f and g, we obtain B,,;; and embeddings
g: A< By and fr: By <> By

fin
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Finally, we define tasks (n + 1, j) for j € w, as described above.

At the end of this recursive process, we have defined the entire sequence
(Bn)new and completed every task t(n). Let M = li_n;Bn. By Lemma M
is a IC-limit. It remains to check richness.

So suppose f: C — M and g: C — A are embeddings, with A, C' € K. Since
C is f.g., f factors through f’: C < B; for some i < w. After composing with
isomorphisms, we can assume that C' C¢, B; and A is A; for some k € w.
So g: C — A was added as a task (i,j) = t(n) for some j and n, and at
stage n + 1, we ensured that there was an embedding ¢’: A < B,,11 such that
g'0g = fint+1lc. Composing with the canonical embedding B,,+1 — M finishes
the proof. O

Definition 2.6. We say K is a Fraissé class if it is an age which satisfies
the condition of Theorem Equivalently, K is non-empty, countable up to
isomorphism, and has HP, JEP, and AP.

Example 2.7. Here are some examples of Fraissé classes and their Fraissé
limits.

e The class of finite sets (in the empty language). The Fraissé limit is the
countably infinite set w.

e The class of finite linear orders. The Fraissé limit is the countably infinite
dense linear order without endpoints (Q, <).

e The class of finite graphs. The Fraissé limit is the random graph (or the
Rado graph) R. It is characterized by the following extension property:
For all finite A, B C R with AN B = &, there exists v € R such that vEa
for all a € A and —wEb for all b € B.



e The class of finite triangle-free graphs. The Fraissé limit is called the
Henson graph H. It is characterized by the following extension property:
For all finite A, B C R with AN B = & and such that A is an independent
set (no edges between vertices in A), there exists v € H such that vEa for
all a € A and ~vED for all b € B.

e The class of finite equivalence relations. The Fraissé limit is the equiva-
lence relation with countably infinitely many countably infinite classes.

e The class of finite fields of characteristic p. The Fraissé limit is [, the
algebraic closure of the prime field IF,.

e The class of non-trivial finite Boolean algebras. The Fraissé limit is the
countable atomless Boolean algebra.

Example 2.8. Returning to Example @, the class Kgorests fails to have the
amalgamation property. Our argument that there is no homogeneous limit can
be translated to a failure of AP. Let A = {a,d’} consist of two disconnected
vertices. Embed A in Bi: a — e —a’ and in By: a — e — e — a’. Then there is
no C amalgamating By and Bs over A, since any such C' must contain a cycle
of length 5.

Lecture 3: The finitary case, DAP

To bring Fraissé limits into the context of first-order model theory, it is conve-
nient to restrict attention to classes where we can define structures and embed-
dings by first-order formulas.

For n € w, an n-generated structure is (A,ay,...,a,), where ay,...,a,
are specified generators for A. Two n-generated structures (A, ay,...,a,) and
(B,by,...,b,) are isomorphic if there exists f: A = B such that f(a;) = b; for
all 1 <7 < n. Equivalently, A and B are isomorphic in the language where the
generators are named by n new constant symbols.

Definition 3.1. Let K be a class of f.g. structures. We say K is finitary if
for every n, there are only finitely many n-generated structures in X, up to
isomorphism of n-generated structures.

Note that if £ is a finite relational language, then every class of f.g. structures
is finitary, since an n-generated structure has size < n, and there are only finitely
many structures of size n up to isomorphism for all n. Note also that if I is
finitary, then K is countable up to isomorphism, which is one of the conditions
characterizing ages in Theorem [I.3]

Example 3.2. A class K of finite structures need not be finitary. For example,
the class Kgelas,p of finite fields of characteristic p is not finitary. By the Primi-
tive Element Theorem (or the fact that the multiplicative group of a finite field
is cyclic), every finite field F,n can be written as Fp[a] = («) for some a. Thus
Kfelds,p contains infinitely many 1-generated structures up to isomorphism.
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Example 3.3. The class of finite Boolean algebras is finitary. Indeed, an n-
generated Boolean algebra has size at most 22", and there are only finitely many
Boolean algebras of size < 22" up to isomorphism, since the language is finite.

Example 3.4. Here is an example of a finitary Fraissé class in an infinite
relational language. Let L = {R, | 1 < n € w}, where each R, is an n-
ary relation symbol. A simplicial complex is an L-structure satisfying the
following properties:

(1) If Ry(a,...,an), then a; # a; for all ¢ # j.
(2) If Ry(ay,...,a,) and o € Sy, then R, (as(1), - -, Qo))
(3) If Ry(a,...,an), then for all k < n, Ri(ai,...,ax).

The call K of all simplicial complexes is a finitary Fraissé class, whose Fraissé
limit is called the random simplicial complex. To see that it is finitary, note
that if A € Ka with |A| < n, then no relation R,, with m > n can hold of any
tuple from A. So to determine A up to isomorphism, we only need to look at a
finite sublanguage of L.

Given an n-generated structure (A, a), we define
Diag(A,a) = {¢(T) | ¢ is atomic or negated atomic, and A | ¢(a)}.
Note that (A4,a) = (B,b) if and only if Diag(A,a) = Diag(B, b).

Proposition 3.5. Suppose K is a finitary age. Then there is a universal theory
Tx such that for all countable M, M = Tx if and only if M is a K-limit.

Proof. Let (B,b) be an n-generated structure which is not in K. Since K is
finitary, we can let (Ay,a'), ..., (Ay,@") enumerate the n-generated structures
in K up to isomorphism. Then for all 1 < i < n, (B,b) % (4;,a’), so there is
some x;(T) € Diag(B,b) with ~,(T) € Diag(4;,a). Let xp(Z) be AX_; x:(T).
Note that B |= xp(b), but for all 1 <i < k, A; = ~xp(a@).
Now define
Tic = {vz-x5(@) | (B,b) € K}.

Suppose M is a K-limit. For any n-generated (B,b) ¢ K, we show M |=
VZ-xp(T). Let @ € M, and let A = (@). Then since A € K, there is some
1 < i < k such that (4,@) = (A4;,a@"), and since A; = —xp(@’) and xp is
quantifier-free, M | -y p(a).

Conversely, suppose M is not a K-limit. Then there is B Cr,. M with
B ¢ K. Let b be generators for B. Then B = xz(b), and since xp is quantifier-
free, M = xp(b), so M = VT—xp(T), and M [~ Tk. O

Proposition 3.6. Suppose K is a finitary age, and let T be the universal
theory from Proposition . For every n-generated structure (A, a) in IC, there
is a quantifier-free formula 04 (%) such that for all M |= T and b from M with
B = (b), M = 04(b) if and only if (B,b) = (A,a).

11



Proof. The proof is similar to that of Proposition Let (Ay,a@'),..., (Ag,a")
enumerate the n-generated structures in K which are not isomorphic to (A, a).
Let 04 (%) be the conjunction of formulas separating Diag(A, @) from Diag(A;, @*)
for each i, so A = 04(a) but A; = —04(a’) for each i.

Now given M |= Ti and b from M with B = (b), M |= 04(b) iff B |= 04(b)
iff (B,b) = (A, @). Indeed, since M = Tx, B € K, so (B, b) is either isomorphic
to (A, @) or one of the (4;,a’). O

Given a finitary Fraissé class K, let A C B be a one-point extension in K.
Choose generators @ for A and b € B such that B is generated by ab. Let 4 p
be the sentence

VZ(04(T) — Jy Op(T, y)).

The sentence ¢4 p is called a one-point extension axiom. Let T be the
theory Ti together with all one-point extension axioms ¢4 p.

Theorem 3.7. Let IC be a finitary Fraissé class with no finite upper bound on
the size of structures in KC. T¢ is complete and Ng-categorical and eliminates
quantifiers. Its unique countable model (up to isomorphism) is the Fraissé limit

of K.

Proof. Let M be a countable model of T). Since M = Tk, M is a K-limit,
and the axioms ¢4 p express that M is rich (using Lemma . So M is the
Fraissé limit of K. Since there is no finite upper bound on the size of structures
in IC, M is infinite. By uniqueness of the Fraissé limit (Corollary, any two
countably infinite models of T§ are isomorphic, so T} is Nyp-categorical.

We have seen that T} is Ng-categorical and has no finite models. By Vaught’s
test, Ti is complete.

For quantifier-elimination, let ¢(Z) be any formula, where Z is a tuple of
length n. For any n-tuple @ from M, let A = (@). Now let @ be any tuple
such that M E 64(a’). Letting A’ = (@’), we have (4,a) = (A',@'), so by
homogeneity, there is an automorphism o € Aut(M) such that o(a) = @’. It
follows that M = (@) if and only if M = ¢(a’). Thus

M = vz (qp(f) e \/ 04, (z))

where the disjunction is taken over those n-generated substructures (4;,a’) such
that M = +(@'). Since K is finitary, there are only finitely many such formulas
04, 80 ¥(T) is equivalent to a finite disjunction of quantifier-free formulas.

We have shown that ¢(T) is equivalent to a quantifier-free formula in M.
Since T is complete, this equivalence holds in all models of T . O

Theorem [3.7 has a converse.

Proposition 3.8. Suppose T is an Rg-categorical theory which eliminates quan-
tifiers. Let M |= T be the unique countably infinite model, and let K = Age(M).
Then K is a Fraissé class with Fraissé limit M.
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Proof. Since Age(M) = K, to show that M is the Fraissé limit of K (and hence
K is a Fraissé class), it suffices to show that M is K-homogeneous.

Let A,B C¢qo M, and assume we have an isomorphism f: A = B. Let @
be generators for A, and let b = f(@). Then B = (b), and f is an isomorphism
of n-generated structures (A4,a) = (B,b). We have Diag(A,a) = Diag(B,b), so
aftp(a) = qftp(b). By quantifier elimination, tp(a) = tp(b).

Now the unique countably infinite model of an Ng-saturated theory is ho-
mogeneous in the sense of first-order logic (e.g., since it is both prime and
saturated). So there is an automorphism o € Aut(M) such that o(a) = b.
Since o agrees with f on the generators @, o|4 = f, as desired. O

Every theory T has an expansion by definitions 7”7 which eliminates quan-
tifiers, by the process of Morleyization. Given an L-theory T, we define a
language £ O £ and an L'-theory T":

L= LU{R,) | ¢(T) an L-formula}
T' =T U{VZ (R (T) ¢ ¢(T)}.

here R,z is a relation symbol of arity the length of Z. Since T" is an expansion
of T' by definitions, every model of T has a unique expansion to a model of T",
further, every £’-formula is equivalent modulo 7" to an L-formula, and every
L-formula ¢(T) is equivalent modulo 7" to the quantifier-free formula R )(T).
So T’ eliminates quantifiers.

If T is Ng-categorical, then T” is also Wg-categorical. If M is the unique
countably infinite model of T, then it has a unique expansion M’ = T”, and by
Proposition [3.8 M’ is the Fraissé limit of its age (in the language £’). Thus, we
have shown that every countable model of an Wy-categorical theory is a reduct
of a Fralssé limit.

We turn now to consider certain strengthenings of AP which influence the
properties of the Fraissé limit.

Definition 3.9. A Fraissé class K has disjoint amalgamation (DAP) if for
all f1: A <— By and fo: A — By in K, there exists C € K and ¢g1: By — C
and go: By — C such that g; o f; = g2 o f2, and furthermore, letting A’ =
91(f1(4)) = g2(f2(A)) € C we have g1(B1) N g2(Bz) = A'.

Let M be a structure. For A C M and b€ M,
Aut(M/A) ={o € Aut(M) |Va € A,0(a) = a}.
orby(b) = {o(b) | 0 € Aut(M/B)}
ACL(A) = {b € M | orba(b) is finite}.

The set ACL(A) is called the group-theoretic algebraic closure of A, to
distinguish it from the model-theoretic algebraic closure:

acl(A) = {b € M | Jp(x) € L(A) such that b € (M) and (M) is finite }.

We always have acl(4) C ACL(A), since if b € ¢(M) and (M) is finite,
orby(b) C @(M), so orby(b) is finite. When M is the countable model of
an Ng-categorical theory and A C M is finite, acl(A) = ACL(A).
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Theorem 3.10. Let KC be a Fraissé class consisting of finite structures. Let
Mic be the Fraissé limit of K. Then K has DAP if and only if ACL(A) = (A)
for all finite A C M.

To prove the theorem, we will use the following group-theoretic lemma, which
comes up surprisingly often in model theory.

Lemma 3.11 (B. H. Neumann’s Lemma). Let G be a group. Assume we can
cover G by finitely many cosets of subgroups: G = J,.,, giH;, where each g; € G
and H; < G. Then at least one of the groups H; has finite index in G.

Proof. We may assume that no proper subset of {goHo,...,gn—1Hn_1} covers
G. Under this assumption, let H = (0,_, H;. We show that [G : H] < n!l, and
hence [G : H;] is finite for all i < n.

Let [n] = {0,...,n —1}. For X C [n], let Hx = (\,cx Hi. We prove
the following claim by induction on m: For all m < n, if |X| = n — m, then

When m =0, |X|=n,so Hx = H, and [Hx : H =1 < 0L

Now given 0 < m < n, let X C [n] with |X| = n — m. By minimality,
{9:H; | i € X} does not cover G, so there is some a € G with a ¢ g;H; for
all i € X. Then for all i € X, aH; and g;H; are disjoint, so g;H; is disjoint
from aHy, and a~'g;H; is disjoint from Hx. (When n = m, X = @, and the
conditions on a are vacuous, so we can choose a = e.)

Since {goHo, - - -, gn—1H,—1} covers G, so does {a"tgoHo, ..., a  gn_1H,_1}.
Thus we can write

i<n

Hx = | J(Hx na™"g;H;).
<n

For each i < n, Hx Na~"'g;H; is either empty or a coset of Hx N H; = Hxugas
and we have shown it is empty whenever i € X. Thus, if we remove the empty
terms from the union, we are left with at most n — (n — m) = m terms.

When i ¢ X, [XU{i}| = n—(m—1), so by induction, [Hxy;; : H] < (m—1)L
We have shown that Hx can be covered by at most m cosets of the form
b;H x (i}, and each of these can be covered by at most (m —1)! cosets of H. So
Hx can be covered by at most m! cosets of H, and thus [Hx : H] < ml.

Finally, when m = n, we have Hx = G, and the claim tells us [G : H] < nl,
as desired. O

The next result, P. M. Neumann’s Lemma, is an immediate consequence
of B. H. Neumann’s Lemma. One can alternatively deduce B. H. Neumann’s
Lemma as an easy consequence of P. M. Neumann’s Lemma. As an interesting
historical note, B. H. Neumann was P. M. Neumann’s father.

Lemma 3.12 (P. M. Neumann’s Lemma). Let G be a group acting on a set X.
Suppose B and C' are finite subsets of X such that each element of B has infinite
orbit under the action of G. Then there is some g € G such that gBNC = @.

Proof. Enumerate B as by,...,b,, and C as c¢1,...,¢,. Foreach 1 <i < m, let
H; = Stab(b;) < G. Since the orbit of b; is infinite, H; has infinite index in G.
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Foreach1 <i<mand1l<j<n,{ge€G|gb =c;}is either empty or a coset
gi,;H; of H;. Since each H; has infinite index in G, by Lemma the cosets
gi,;H; fail to cover G. Thus we can find some g € G such that for all ¢ and j,
gb; #cj,ie., gBNC = @. 0

Proof of Theorem[3.10. Assume first that K has DAP. Let A C My be finite.
We have A" = (A) C ACL(A), since A’ is fixed pointwise by Aut(M/A).
Now let b € ACL(A), with |orba(b)] = n. Assume for contradiction that
b¢ A Let B= (A’ U{b}), and let f: A’ — B be the inclusion. By repeatedly
applying DAP, we can find a structure C' containing n + 1 isomorphic copies of
B, By, ..., B, with a common copy of A’, which are disjoint over A’. Each B;
contains an element b; corresponding to b, and disjointness implies that b; # b;
when i # j. By richness, we can embed C into My over A’.

Now for each 1 < i < n + 1, there is an isomorphism f;: B — B; fixing A
pointwise and with f(b) = b;. By homogeneity, these f; lift to automorphisms
o; € Aut(My/A). Thus by,...,b,y1 € orba(b), contradicting |orba(b)| = n.

Conversely, assume ACL(A) = (A) for all A C My finite. Suppose we
have f1: A — B; and fo: A — By with A, B, B, € K. By AP and richness
of My, there exist embeddings g1: B1 < My and go: By < My such that
g10f1=g20 fa. Let A" = g1(f1(A)) = g2(f2(A)). The problem is that we may
not have g1 (B1) Ng2(Ba) = A'.

By assumption, letting G = Aut(My/A’), each element of By \ A’ is not in
ACL(A"), so it has infinite orbit under the action of G. By Lemma there
exists 0 € G such that o(B; \ A') N By = &, so 0(By) N By = A’. Setting
gy =ocog; and C = (¢}(B1) U ga(B2)) shows that K has DAP. O

Lecture 4: Order properties

Model theorists love to measure how much order is present in a structure. The
interest in this probably originates with Shelah’s identification of the important
class of stable theories and his characterization of stability by the absence of the
order property. Fraissé limits tend to be unstable (i.e., they usually have the
order property, and even a stronger property called the independence property).
But our goal in this section is to show that free amalgamation in a Fraissé class
K is incompatible with a certain strengthening of the order property in the
theory of the Fraissé limit Th(My).

Until further notice, T is a complete theory, and U/ = T is a suffi-
ciently saturated model. We write x and y for tuples of variables of
arbitrary length. When we write ¢(z;y), we mean the free variables
of the formula ¢ have been partitioned into two tuples, z and y.

Definition 4.1. T has the order property (OP) if there is a formula ¢(x;y)
and sequences (a;)icw from U* and (b;)ic. from UY such that U = p(a;;b;) if
and only if 7 < j. Otherwise, T is NOP, or stable.
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Definition 4.2. T has the independence property (IP) if there is a formula
o(x;y) and sequences (a;)ie,, from U* and (bx)xc. from UY such that U =
p(a;;bx) if and only if ¢ € X. Otherwise, T is NIP.

Note that if T has IP, witnessed by ¢(x;y), then the same formula witnesses
OP. Indeed, letting [j] = {0,...,7 — 1}, we have U |= o(a;; by;) if and only if
i € [j] if and only if i < j.

Example 4.3. The complete theory T, of the random graph has IP, and hence
also OP, witnessed by zRy. Indeed, we can take (a;);c. to be any sequence of
distinct elements from &/. Then for each X C w, the partial type

px(y) ={aiy|ie X} U{-a;Ry | i ¢ X}

is consistent by the extension properties and compactness. We can take bx to
be any realization of px (y) in U.

Lemma 4.4. T has OP if and only if there is a formula ¢¥(z;2") with z and 2’
tuples of the same length, and a sequence (¢;)icw such that U = p(ci;c;) if and
only if i < j.

Proof. Such a ¢(z;2') and (¢;)ie., witnesses OP. Conversely, suppose o(x;y)
and (a;)iew and (b;)ic, witness OP. Let z = zy and 2’ = 2'y/, let ¢; = a;b;
for all ¢ € w, and let ¥(z,2") = @(z;y’). Then U = ¥(ci,c;) if and only if
U = ¢(a;;b;) if and only if ¢ < j. O

If T has OP, then some formula 1(z; 2’) orders an infinite sequence (¢;)icw
from U*. But the formula v need not behave anything like an order on all of
U*. The following stronger definition imposes a global ordering relation.

Definition 4.5. T has the strict order property (SOP) if there is a formula
o(z;y) and a sequence (b;);e. from UY such that o(U;b;) S (U;bi1) for all 7.
Otherwise, T is NSOP.

Note that if p(x;y) and (b;);e,, witnesses SOP, then the formula

Va (p(z;y) = p(x;9') A 3z (—p(x;9) A ez y')

defines a strict partial order <, (an irreflexive and transitive relation) on all of
UY which has an infinite chain: b; <, bj41 for all ¢ € w. It follows that T" has
OP, witnessed by the formula y <, v and (b;)icc-

Conversely, if y < ¢ is a definable strict partial order on U¥ with an infinite
chain (b;);ew, then (U < b;) C (U < bjy1) for all i € w, so T has SOP.

Example 4.6. DLO = Th(Q; <) has SOP, and hence also OP, witnessed by
x <y and (b;);e, any strictly increasing sequence.

Fact 4.7 (Shelah). T has OP if and only if T has IP or T has SOP.
It is an exercise to show that DLO is NIP and T}, is NSOP.
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Definition 4.8. Let n > 3. T has the n-strong order property (SOP,,) if
there is a formula ¢(z; ) (where x and z’ have the same length) and a sequence
(@i)icw from U such that U = ¢(a;;a;) for all ¢ < j, but there are no p-cycles
of length n, i.e., the following formula is inconsistent:

/\ @@ Tit1) A p(Tn-1;To)-
i<(n—1)

Note that if < is a definable strict partial order on U* with infinite chains,
then < 2’ has SOP,,. It follows that SOP implies SOP,, for all n > 3. We will
show below that SOP,, implies OP for all n > 3. It is a (not-so-easy) exercise
to show that SOP,,;; implies SOP,, for all n > 3.

Example 4.9. Let H be the Henson graph, the Fraissé limit of the class Ka
of all finite triangle-free graphs. Th(H) has SOPs.

Let (x1,x2, x3; Y1, Y2, ys) be x1 Rys Axa RysAxs Ry,. Consider the countable
graph G with vertices {a;,b;,c; | i € w} and edges a;Rb; when ¢ < j, b;Rc;
when ¢ < j, and ¢;Ra; when ¢ < j (and no other edges). I claim that G has no
triangles. Indeed, since there are no edges a;Ra; or b;Rb; or ¢; Rc;, any triangle
must contain vertices a;, b;, ¢ for some 7, j,k € w. But then ¢ < j, 7 <k, and
k < i, contradiction.

By universality of H, there is an embedding G — H, and we identify G with
its image in H. For all i < j, we have H = ¢(a;, b;, ¢;;a5,b;,¢;) by construc-
tion. But (21, 2, 235 Y1, Y2, Y3) A@(Y1, Y2, ¥3; 21, 22, 23) A (21, 22, 235 21, T2, 3)
is inconsistent. Indeed, this conjunction implies x1 Rys A y2 Rz3 A z3 Rx1, which
is inconsistent, since H is triangle-free.

It will follow from Theorem below that Th(H) is NSOP,.

Example 4.10. Let £ ={D, | ¢ € QN [0, 1]} and K =finite metric spaces with
all distances in QN0, 1]. We view these metric spaces as L-structures by setting
Dy (x,y) if and only if d(z,y) = ¢. Then K is a Fraissé class, whose Fraissé limit
My is called the rational Urysohn sphere. As usual, M is characterized by one-
point extension axioms: For every finite subspace X = {z1,...,z,} and every
assignment of distances d(z;,y) in Q N[0, 1] which do not violate the triangle
inequality, there exists a y with the specified distances to all the x;.

The metric completion of My is the Urysohn sphere, the unique universal
and homogeneous separable metric space with all distances < 1.

It is a theorem of Conant and Terry that Th(My) is NSOP and has SOP,
for all n > 3. But it is necessary to use a different formula to witness SOP,, for
each n.

Question 4.11. Is there an NSOP theory T with a single formula ¢(z;y) that
witnesses SOP,, for all n > 3, i.e., such that there is a sequence (a;);c. with
U [= p(a;aj) for all i < j, but there are no ¢-cycles of any finite length?
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Lecture 5: Indiscernibles, free amalgamation

To prove things about these order properties, it is useful to make the witnesses
indiscernible.

Definition 5.1. Let (I, <) be a linear order, let Z = (a;);er be a sequence from
U*, and let B be a set (when no set B is mentioned, we assume B = &). We
say that 7 is a B-indiscernible sequence if for all n € w, all i1 < --- < i, and
J1 < ...jnin I, and all £(B)-formulas ¢(x1,...,x,) (where each z; is a tuple
of the same length as z), we have

u ): Qo(ahw"aain) iff |:60(aju~~~vajn)-

Example 5.2. Let T'= DLO. By quantifier elimination, every strictly increas-
ing sequence (a;);cw of elements of U is an indiscernible sequence.

On the other hand, with 7" = Th(Z; <) the strictly increasing sequence
0,1,2,... is not indiscernible: letting ¢(z1,22) be Jy (1 < y Ay < z2), we
have = —p(0,1), but E ¢(0,2).

Let T'=Tg . By quantifier elimination, every infinite clique or independent
set is an indiscernible sequence.

Definition 5.3. Let (I, <) be an infinite linear order, let Z = (a;);c; be an
I-indexed sequence from U* (not necessarily indiscernible), and let B be a set.
The Ehrenfeucht—-Mostowski type of Z over B is a set of £(B)-formulas in
contexts x1,...,T,, where n € w and each x; is a tuple of the same length as z:

EM(Z/B) = {¢(x1,...,2,) € L(B) |for all i; < -+ < i, € I,E p(as,,...,a;,)}

A sequence J = (a}) ;e from U”, indexed by a linear order (J, <), satisfies
EM(Z/B) if for all p(z1,...,z,) € EM(Z/B), we have = p(aj,,...,a} ) for all
g1 < -+ < jn € J. We also say that J is locally based on Z over B.

The sequence Z is indiscernible over B if and only if EM(Z/B) is complete
in the sense that for any Lp-formula ¢(z1,...,2zy), either ¢ € EM(Z/B) or
- € EM(Z/B).

Using Ramsey’s Theorem, it is always possible to take a sequence in a model
of T" and find an indiscernible sequence locally based on it.

Lemma 5.4 (“Standard Lemma”). Let Z = (a;)ic., be a sequence from U*, and

let B be a set. Then there is o B-indiscernible sequence J = (¢;)jew satisfying
EM(Z/B).

Proof. Consider the partial type ¢ (in context (y;);c., where each y; is a tuple
of length |z|) consisting of formulas:

(@) ©(Yjys---1Yj,), where j; < --- < j, in w and ¢(z1,...,2,) € EM(Z/B).
(b) So(ij"'?yjn) A Qo(yj{v”wyj;l)v where jl << ]n and Ji <. < J’;L in

w and ¢(z1,...,2,) is an Lp-formula.
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It suffices to show that ¢ is consistent, since the formulas of type (a) ensure that
J satisfies EM(Z/B) and the formulas of type (b) ensure that 7 is indiscernible
over B.

For any finite set of £L(B)-formulas A, let ga be the same partial type, but
with the formulas of type (b) restricted to those £(B)-formulas appearing in A.
A finite subset of ¢ is contained in ga for some finite set A, so by compactness it
suffices to show that ga is consistent. Further, by adding dummy variables, we
may assume that each formula in A has the same context x1,...,z,. Indeed, if
(X1, ..., &) is an L(B)-formula with m < n, let ¢'(x1,...,2,) be the same
formula with dummy variables x,,+1,...,2, added. Now for any j; < --- < j,
and j1 < --- < jI. in w, we can extend both sequences to j; < --- < j, and
Ji < -+-<gJhin w, and (b) for ¢’ implies

w(yju'"’yjm) A w/(yj17""yjn) Ane w/(yjiv"'vyji,,) A 'Lp(yj{v"'ayj,/ﬂ,)'

Let [w]™ be the set of all strictly increasing n-tuples from w. Define a coloring
c: [w]™ = P(A) by

c({iv, ... in}) ={p(@1,...,zn) €A U E p(aiy,...,ai,)}

By Ramsey’s Theorem, there is an infinite subset H C w which is homo-
geneous for c¢. Enumerate H in increasing order as (a;)jc.. This sequence
satisfies ga, which completes the proof. O

To illustrate the use of making witnesses to order properties indiscernible,
consider the following.

Lemma 5.5. If T' has SOP,, for some n > 3, then T has OP.

Proof. Suppose ¢(x;x’) and (a;)ie. witness SOP,,. We have U = ¢(a;;a;) for
all i < j, and we would be done if we could show that for all i > 7, U = ¢(a;; a;).
This should be ruled out by the inconsistency of cycles, but we could have
U = p(a;;aj) with ¢ > j but ¢ and j “too close” to form an n-cycle.

By Lemma we can find (a});e,, indiscernible and locally based on (a;);icew-
Since U = p(a;;a;) for all i < j, p(x;2") € EM((ai)icw/9), so U = ¢(aj;al)
for all i < j. Suppose for contradiction that we have U = ¢(aj;a}) for some
i > j. By indiscernibility, U = ¢(al,_;;ap). But then (a});<y forms a p-cycle
of length n, contradiction.

By indiscernibility, either U = —p(aj;a}) for all 4, or U = ¢(a};a}) for all
i. In the first case, we have a witness to OP. In the second case, p(x;2’) and
(ai11)icw and (a;)ie, Witnesses OP, since U = ¢(aj,q;a}) if and only if i+1 < j
if and only if ¢ < j. O

‘We need one more useful lemma about indiscernibles.

Lemma 5.6. Let (a');c; be a B-indiscernible sequence, indexed by an infinite
linear order I, with each a an n-tuple (af),...,al,_1). Then there exists X C

[n] = {0,...,n — 1} such that for all k € X, ai, = ai for alli # j in I, and
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for allk ¢ X and k' € [n], a} # ai, for all i # j in I. In other words, each
a’ can be partitioned into subtuples b® (the coordinates not in X ) and ¢ (the
coordinates in X ) such that ¢t = ¢ for all i # j and b* and b’ are disjoint for

alli #j.

Proof. Let X be the set of all k € [n] such that there exist i < j in I with
ai, = aj.. By indiscernibility, for all k € X, for all i # j in I, a}, = aj.

Now let k ¢ X and k' € [n]. Let i # j in I, and suppose for contradiction
that a, = aj,. Assume i < j (the other case is similar), and since [ is infinite
(shifting ¢ or j if necessary), we may assume without loss of generality that there
is some i’ in I with ¢ < i’ < j. Since a}, = aj,, by indiscernibility ai = aj,. But
then a} = a};, so k € X, contradiction. O

For the remainder of the section, we assume the language £ is
relational.

We now turn to our Fraissé-theoretic sufficient condition for NSOP4. The
proof is implicit in the verifications that several examples are NSOP, (by Shelah
and others), but it was given in its general form for the first time (a bit more
generally than we present here) by Rehana Patel in unpublished work. More
recently, Gabe Conant abstracted the proof away from the setting of Fraissé lim-
its, to theories equipped with a certain kind of stationary independence relation
called a “free amalgamation relation”. Scott Mutchnik has further developed
these ideas in recent work.

For sets A, B, C, and D, we write D = B L4 C to indicate that D is the
disjoint union of B and C over A: BUC =D and BNC = A.

Definition 5.7. Let C be a structure with substructures A, By, and Bs such
that A C By and A C By. We say that C is the free amalgam of B, and Bs
over A, denoted C' = By @4 Bs, if C' = B; L4 Bs, and for every relation symbol
R e L, R(C) = R(B1) Ug(a) R(B2). More explicitly, if R(¢) holds in C, then
¢ce€ By, or¢e BY.

Definition 5.8. We say a Fraissé class K has free amalgamation if for all
fi: A — By and fo: A — By in K, there exists C' € K and ¢1: By — C
and go: By — C such that g1 o fi = g2 o f2, and furthermore, letting A’ =
91(f1(A)) = g2(f2(A)) € C we have C' = g1(B1) ©ar ga(Ba).

Note that free amalgamation is stronger than disjoint amalgamation. There
is not an obvious way to extend the definition of free amalgamation to languages
with function symbols. One possibility would be to require C' to be the free L-
structure generated by By and By over A. But we will stick to the relational
context for simplicity.

Example 5.9. The class K¢ of finite graphs and the class Ka of finite triangle-
free graphs both have free amalgamation. The class Kpo does not have free
amalgamation, since for any b; € By \ A and by € By \ A, we must have either
b1 < by or by < by in the amalgam C.
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Now we’re ready to prove our main Theorem. Example shows the result
is sharp: we cannot obtain NSOPj3 in general.

Theorem 5.10. Suppose K is a finitary Fraissé class with free amalgamation.
Let T = Th(Mjy), the theory of the Fraissé limit. Then T is NSOPy, and hence
NSOP.

Proof. Suppose for contradiction that ¢(x;z’) and (a;);e,, witnesses SOP,. Ex-
actly as in Lemma we may assume that (a;);e, is indiscernible. Since
(ai)iew is countable, by Léwenheim—Skolem, it lives in a countable model of T,
and by No-categoricity (Theorem , in My.

By Lemma [5.6] we can divide each a; into subtuples b; and c¢;, where for all
i < jinw, ¢; = ¢; and b; is disjoint from b;.

Let C € K be the substructure enumerated by c¢g, and for each i € w, let
A; € K be the substructure enumerated by a;. All A; have C' as a common
substructure, and by indiscernibility, all A; are isomorphic by isomorphisms
mapping a; — a; (and hence fixing C' pointwise).

Let By = Ag U Ay, and let Bo = A1 UAs. Let D = By Da, Bs. By
free amalgamation, D € K, and by richness of My, there is an embedding
f: D < My over Ba. Let D' = f(D), By = f(Bo) and Ay = f(Ap). So
D' = B\ @4, Bj. We also write a;, for the tuple which is the image of ag under
this embedding.

Let E = Aj U As. Since A) C B, Ay C Bs, and Aj N Ay = C, we have
E = A, ®¢c A2. Now E has an automorphism swapping A{, and Az and fixing C'
pointwise. By homogeneity, there exists an automorphism o € Aut(My) with
o(ay) = az and o(az) = af. Let af = o(aq).

By homogeneity, since By = By, tp(ajai) = tp(agai), and in particu-
lar Mx E ¢(ap,a1). By hypothesis, Mx = ¢(a1,a2). Then also Mx =
¢(o(ag),0(a1)) and My |= ¢(o(ar),0(az)), so Mk |= ¢(az,ay) and My |=
w(al,a). Thus ag, a1, az,a) form a g-cycle of length 4, contradicting SOP,. O

Lecture 6: Zero-one laws and pseudofiniteness

We now turn to another notion of limit of finite structures, the logical limit,
with an interest in comparing it with the Fraissé limit. Logic limits in the sense
of first-order zero-one laws were introduced independently by Glebskii, Kogan,
Liogon’kii, and Talanov (in the USSR in 1969) and Fagin (in the US in 1976),
and they are now a core area of finite model theory. For a survey, see Compton
“0-1 Laws in Logic and Combinatorics”. It is possible to study zero-one laws
for other logics, but we stick to the first-order case here.

Let £ be a relational language. Given a class K of finite structures, let K(n)
be the set of structures in K with domain [n]. We assume K is finitary, has HP,
and contains arbitrarily large finite structures, so K(n) is finite and non-empty
for all n. Note that K(n) may contain multiple isomorphic copies of a single
structure, with different labelings of the domain by [n]. In fact, the number of
times a structure A appears (up to isomorphism) in IC(n) is n!/| Aut(A4)|. It is
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also possible to consider zero-one laws for unlabeled structures, but the counting
is usually easier for labeled structures.

For each n, let p,, be a probability measure on X(n). For a property P, we
write [P] = {A € K(n) | A satisfies P} (usually P is a formula (@), where @ is
a tuple from [n]). We are often interested in the uniform measure:

([P = e

Given a sentence @, and a sequence ft = (ln)new Of probability measures on
the K(n), the limit probability of ¢ is

poo(p) = lm pin([])-
We denote by Tx the almost sure theory: the set of sentences with limit
probability 1. We say K has a first-order zero-one law with respect to p if
every sentence ¢ has limit probability 0 or 1. Since fioo(—¢) = 1 — poo (), T
has a first-order zero-one law if and only if T} is complete.

Lemma 6.1. Let ¥ be a countable set of sentences. Suppose that pe(p) =1
for all p € X. Then if ¥ = 1, we have poo (1) = 1.

Proof. By compactness, there are finitely many sentences g, ..., 0m—1 € 2
such that A,_, ;i F 9. For any € > 0, since pioo(¢) = 1, there exists N. such
that for all n > N, (@) > 1— 5 for all i <m. Then u,(A,_,, ¢i) > (1—¢),
80 (1) > 1 — €. Since € was arbitrary, poo(v) = 1. O

Theorem 6.2. The class Kqg of finite graphs has a first-order zero-one law
with respect to the uniform measures p. Moreover, T,’éG = Ty, the theory of
the random graph.

Proof. Tt may be helpful to observe that the uniform measure p, on Kg(n) is
equivalent to the following random construction (called the Erdos-Renyi random
graph model G(n, %)) for all i < j < n, flip a fair coin. If it is heads, put an
edge between vertices ¢ and j. Indeed, exactly half the graphs in Kg(n) have an
edge between i and j, and these edge probabilities are independent for distinct
edges.

Recall that T¢ , is axiomatized by the universal theory of graphs, together
with one-point extension axioms for 0 < k < n:

Onk: VT, ..., Ty /\ x; #x; — Jy /\yRo:i/\ /\ —yRx;

i<j<n i<k k<i<n

By Lemmal6.1] if we show that each of these axioms has limiting probability 1,
then T, C T,*CLG. Since T¢ . Is complete (Theorem , and T,’éG is consistent,
it follows that they are equal.
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Since every structure in Kg(n) is a graph, the graph axioms have limiting
probability 1. So we consider an extension axiom ¢, ;. For N € w, we compute
the probability that ¢, is not satisfied by a graph on [N].

Let 0, 1(Z,y) be the formula (/\Kk YR N Nj<ion —|ny¢>. Given a tuple

@ of distinct elements in [N] and b not in @, pn ([0n 1 (@, b)]) = 27", and for b # V/
in [N] (and not in @), the events [0, x(a,b)] and [8, x(a,b’)] are independent.
Thus, since there are N — n choices for the witness b, we have

pn ([Vy —0(a, y)]) = (1 —27")N "

Now there are N™ choices for the tuple @ from [N] (and the redundant tuples
contribute nothing to the probability), so we have an upper bound:

an(EE( N\ @i # 25 AVy=0(@,y))]) < N"(1 27N

i<j<n

Since n is constant, the exponential decay term (1 —27")V~=" dominates the
polynomial growth term N™ in the limit N — 00, S0 oo (—¢n k) = 0, and hence

Noo(@n,k) =1 O

As a consequence of the theorem, we determine which (first-order definable!)
properties hold of “almost all” finite graphs by answering the same question
for the random graph. For example, almost all finite graphs are connected,
in fact of diameter 2, since the random graph satisfies VzVy3z (xRz A zRy).
Of course, first-order logic over finite graphs is not expressive enough to define
many properties of interest, which is why there is significant interest in extending
zero-one laws to stronger logics.

Essentially the same proof as for Theorem [6.2]shows that if K is the class of
all finite L-structures in a finite relational language L, then K has a first-order
zero-one law with respect to the uniform measures, and T,’C‘L is the theory of the
Fraissé limit of Kz (this is the case originally considered by Fagin). It is crucial
here that £ is relational. For example, if £ contains a single unary function
symbol f, then

ooV (f(2) £ 2) =

so K, does not have a first-order zero-one law.
An immediate consequence of Theorem @ is that the theory Tj . is pseud-
ofinite.

Definition 6.3. A theory T is pseudofinite if for every sentence ¢ such that
T E ¢, ¢ has a finite model.

Example 6.4. If a theory T is not pseudofinite, then it entails a sentence which
has only infinite models. Here are two standard ways that this can happen:

1. Unbounded orders: The conjunction of the strict partial order axioms
with Vx3y z < y is a sentence that has only infinite models. For example,
DLO = Th(Q, <) is not pseudofinite.
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2. Definable functions which are injective but not surjective (or vice versa).
For example, Th(Z, +) is not pseudofinite, because the function © — z+x
is injective but not surjective. And Th(F,) (for p # 2) is not pseudofinite,
because the function z +— z - = is surjective but not injective.

Returning to graphs, if Tg E ¢, we have seen not just that ¢ has a finite
model, but that almost all sufficiently large graphs satisfy . Of course, this is
a probabilistic argument, not a particularly constructive one. Can we actually
find a finite graph satisfying ¢ in a better way than enumerating all sufficiently
large graphs and checking? It turns out the answer is yes.

Example 6.5. Given a prime number p congruent to 1 mod 4, we define a
graph G, with domain the finite field F,, by setting aRb if and only if (b — a)
is a non-zero square in F,. Since p = 1 mod 4, —1 is a square in [, so this
relation is symmetric. Any sentence in the theory of the random graph is true
in G, for all sufficiently large p.

The graphs G, are called Paley graphs, and they are discrete models for
the Erdés—Renyi random graph model G(n, %) in the sense that as p — o0,
the densities of all edge configurations converge to the probabilities specified by
G(n, 3). For this reason, they are called “quasi-random” graphs. The first anal-
ysis of the Paley graphs used very non-trivial number theory. Chung, Graham,
and Wilson showed that finitely many instances of limiting densities suffice to
imply the rest, and these finitely many instances can be checked in an elemen-
tary way for the Paley graphs.

Theoremmay lead one to think that the equality T,‘C‘G = Ty, and pseud-
ofiniteness of T¢ , are “typical” of Fraissé limits, at least in finite relational
languages. This is far from the case.

Example 6.6. Let Ko be the class of finite linear orders. Tg  is DLO =
Th(Q, <). But this theory is not pseudofinite, as explained in Example
above. In fact, Ko has a zero-one law for the uniform measures, and T,‘CLLO
is the theory of infinite discrete linear orders with endpoints. Here “discrete”
means that if z is not the greatest element, then it has an immediate successor,
and if x is not the least element, then it has an immediate predecessor.

Example 6.7. Let K be the class of finite triangle-free graphs. It is a theo-
rem of Erdos, Kleitman, and Rothschild that almost all triangle-free graphs are
bipartite. That is, with respect to the uniform measures p, TQA contains sen-
tences asserting that there are no cycles of any odd length. This is in contrast
to T, = Th(H): since Age(H) = Ka, H contains cycles of all odd lengths
> 5.

Kolaitis, Promel, and Rothschild built on the work of Erdds—Kleitman—
Rothschild and showed that A has a zero-one law with respect to the uniform
measures. T,’éA is the theory of the generic bipartite graph: If we expand the
language of graphs by two predicates P and @ for the sides of a bipartition, the
class of finite bipartite graphs becomes a Fraissé class. T ,‘éA is the reduct to the
graph language of the theory of the Fraissé limit.
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It is possible that Ty = Th(H) is pseudofinite, despite this not being
witnessed by a zero-one law with respect to the uniform measures. In fact, this
is a longstanding open problem.

Greg Cherlin has done a lot of hard combinatorial work on this problem.
Michael Albert constructed an infinite family of finite triangle-free graphs satis-
fying the one-point extension axioms ¢4 g with |A| = 3. But it is open whether
there is any finite triangle-free graph satisfying the p4 g with |A| = 4.

It seems likely to me that if Th(H) is pseudofinite, the finite models are
sporadic, in the sense that they only occur in certain sizes or much have a very
regular structure, in contrast to the wealth of finite models given to us by a
zero-one law for the uniform measures.

The discussion above suggests the following very broad question:
Question 6.8. Which Ny-categorical theories are pseudofinite?

Since every Wy-categorical theory can be axiomatized by extension axioms
in an expanded language (by Morleyization and Proposition , this question
comes down to the question of when one-point extension axioms are satisfiable in
finite structures. On the positive side, Cherlin, Harrington, and Lachlan proved
that every Rg-categorical and Ng-stable theory is pseudofinite (Rg-stability is a
strengthening of stability, so such theories do not have the order property). On
the negative size, we have the following:

Proposition 6.9. No Ng-categorical pseudofinite theory has the strict order
property.

Proof. If T has the strict order property, then it defines a strict partial order
< with infinite chains. Let {a; | ¢ € w} be a chain in the unique countable
model M of T, so M }= a; < a; if and only if ¢ < j. In a countably categorical
theory, automorphism-invariant properties are definable, so there is a formula
p(x), with ¢(x) € tp(a;) for all 4, such that M |= ¢(b) if and only if there is an
infinite <-chain above b.

Now M = Jz p(z) AV (p(z) = Jy (x < yAep(y))). But in any partial order,
this sentence implies the existence of an infinite increasing chain of elements
satisfying ¢(z), so its conjunction with the partial order axioms for < has no
finite model. O

Lecture 7: Higher amalgamation properties
In this section £ is a relational language and K is a finitary Fraissé
class.

Before giving any formal definitions, let me start with some motivating dis-
cussion. The amalgamation property AP is about amalgamating two structures
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over a common substructure:

B By

NS

A

What if we want to amalgamate three structures? Since K has AP, it is easy
to amalgamate a diagram like this:

By \ljf/Bg

by amalgamating B; and Bs and then amalgamating the result with Bs.

It’s more interesting to specify amalgams of each of the pairs {Bi, Bz},
{B1, B3}, and {Bs, B3} and ask whether the resulting triple of structures can
be amalgamated coherently:

Bia B3 B3

[ X X

The answer is clearly no in general: if b; € B; \ A for all 1 < < 3, we might
have b1 = b2 in B12 and b1 = bg in Blg, but b2 7é b3 in B23. Then B12, B13
and Bsg cannot be embedded into a common structure C' in such a way that
all the squares in the diagram commute. Problems like this can arise whenever
the images of B; and B; are not disjoint over A inside B;;. So we will impose
a disjointness requirement.

More generally, to amalgamate n structures, we will consider diagrams in-
dexed by P~([n]), the set of all proper subsets of [n].

Finally, it will be convenient to think about amalgamating types (relative to
the complete theory Th(My)), rather than structures. This is equivalent, since
every complete type p(x) relative to Th(Mj) is isolated by a formula 64(x)
describing the isomorphism type of the induced substructure on x.

Let T be a theory. We say that a type p(Z) (with no parameters) in the
variables {z; | ¢ € I} is non-redundant if it contains the formulas {z; # z; |
i£jel}.

A family F C P([n]) of subsets of [n] is downwards closed if S’ € F
whenever S C S and S € F. Given a downwards closed family of subsets
F C P([n]), and pairwise disjoint tuples of variables Tg for each S € F, a
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coherent F-family of types is a set {ps | S € F} such that each pg is a
non-redundant type in the variables (Zs/)s/cs, and pss C ps when S’ C S.

We denote by P~ ([n]) the downwards closed family of all proper subsets of
[n]. For n > 2, a disjoint n-amalgamation problem is a coherent P~ ([n])-
family of types. A solution to a disjoint n-amalgamation problem is an exten-
sion of the coherent P~ ([n])-family of types to a coherent P([n])-family of types;
that is, a non-redundant type py,) such that ps C py, for all S. We say T' has
the disjoint n-amalgamation property (n-DAP) if every n-amalgamation
problem has a solution.

A basic disjoint n-amalgamation problem is a disjoint n-amalgamation prob-
lem such that each tuple of variables T; is a singleton x;, and all other tuples Tg
with |S| # 1 is empty. So each pg is a type in the variables (x;);cs. A solution
to the basic disjoint n-amalgamation problem is a non-redundant type pp, in
the variables (2;);c[, such that ps C pp, for all S. Similarly, we say 7" has
basic n-DAP if every basic disjoint n-amalgamation property has a solution.

Remark 7.1. A Fraissé class IC has DAP if and only if T¢ = Th(M) has
2-DAP. Given A, By, By € K and embeddings fy: A — By and f;: A — Bj,
let Ty be a tuple of variables enumerating A, and let Typ; and Ty be tuples
of variables enumerating B; \ f1(A) and Bz \ f2(A). Set pg = {04(T»)}, and
priy = 10B,(To,T3)}. By QE, these determine complete types relative to
T¢. A solution to this disjoint 2-amalgamation problem is a non-redundant
type pg0,11(To, Tioy, T{1},T10,1}), which describes the isomorphism type of a
structure C' into which By and By embed disjointly over the image of A.

In general, we say that a finitary Fraissé class KC has n-DAP if the theory of
its Fraissé limit does.

Example 7.2. The class Kg of finite graphs has n-DAP for all n. We can
see this by generalizing free amalgamation: take pp,) to be the type saying that
there are no edges other than those specified by the pg for S € P~(|n]).

Example 7.3. Here are three examples of failures of basic 3-DAP in Fraissé
classes with 2-DAP:

1. Let K be the class of finite equivalence relations. The non-redundant
2-types specified by {zoEz1}, {voEz2}, and {—x; Fxy} cannot be amal-
gamated.

2. Let Kpo be the class of finite linear orders. The non-redundant 2-types
specified by {xo < 21}, {1 < 22}, and {x2 < 1} cannot be amalgamated.

3. Let LA be the class of finite A-free graphs. The non-redundant 2-types
specified by {zoRz1}, {voRxz2}, and {21 Rxs} cannot be amalgamated.

Example 7.4. Generalizing Example 3), let Kk be the class of n-free k-
hypergraphs: the language consists of a single k-ary relation R, and the struc-
tures in KCF are k-hypergraphs with no substructure isomorphic to the complete
hypergraph on n vertices. Note that K% = Ka.
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For n > k, KF satisfies basic disjoint m-amalgamation for m < n, but fails
basic disjoint n-amalgamation, since the first forbidden configuration has size n.
However, K* already fails disjoint (k + 1)-amalgamation. Let py be the type of
a complete hypergraph on (n — k — 1) vertices. For @ # S € P~ ([k+ 1)), let pg
be the type of a complete hypergraph in the variables x5 together with x; for
i € S. This is fewer than n variables, so pg is consistent. But for any k-tuple
y from Ty and zo, ..., Tk, ¥ is contained in pg for some S € P~ ([k + 1]), so ps
implies R(y). Thus the pg cannot be amalgamated consistently: any amalgam
would imply the existence of a complete hypergraph on n vertices.

On the other hand, KF has ¢-DAP for all 2 < ¢ < k. Suppose (Ps)scig is
a coherent family of types. Define py; to be the type extending Usg[z] ps by
asserting that there are no edges other than those specified by the types pg (this
is essentially the “free amalgamation”). If py, is consistent, it is a solution to
the disjoint f-amalgamation problem. So assume for contradiction that pg is
inconsistent. Then there are variables yi,...,y, such that py says y1,...,yn
are the vertices of a complete k-hypergraph. For each i € [¢], let S; = [¢] \ {¢}.
Since pg, is complete and contained in pyg, ps;, cannot mention all the variables
yj. So there is some y;, such that y;, is not in Zg for any S C S;. Extend
Yjos - - - »Yj,_, arbitrarily to a k-tuple 7. Then R(y) € pyy. By definition of pyy,
there is some S C [¢] such that R(y) € ps. But picking i such that i ¢ S,
S C S;, and ps does not mention the variable y;,, contradiction.

If we replace P~ ([n]) by another downwards closed family of subsets F in the
definitions above, we call the amalgamation problem partial. It will be useful
to observe that disjoint amalgamation gives solutions to partial amalgamation
problems as well.

Lemma 7.5. Suppose that T has (basic) k-DAP for all2 < k <n. Then every
(basic) partial disjoint n-amalgamation problem has a solution.

Proof. The same proof works in the basic case and the general case.

We are given a coherent F-family of types {ps | S € F}, with F C P~ ([n])
downwards closed, and we seek a non-redundant type p,) with ps C pj,) for all
S € F. Note that we can assume JF is non-empty, otherwise any type py,) is a
solution.

We build a solution “from the bottom up”. By induction on 0 < k < n, I
claim that we can extend this family to a coherent Fj-family of types, where
Fr=FU{S C[n]||S| < k}. When k = n, we have a coherent P([n])-family
of types, as desired.

When k£ = 0, since F is non-empty and downwards closed, & € F, so
Fo = F. When k = 1, if there is any ¢ such that ¢ ¢ S for all S € F, then
the original F-family of types says nothing about variables Z(;;. We choose any
type pii}(To, ;) in the single variable x; (note that Ty is empty in the basic
case).

Now given a coherent Fy_1-family of types by induction, with 2 < k < n, we
wish to extend to a coherent Fj-family of types. If there is any set S C [n] with
|S| = k such that S ¢ Fj_1, then all proper subsets of S are in Fj_;. Hence
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we have types {pr | R € P~ (S)} which form a coherent P~ (S)-family. Using
k-DAP, we can find a non-redundant type pg in the variables Tg extending the
types pr. Doing this for all such S gives a coherent Fj-family of types, as
desired. O

We are largely interested in theories with n-DAP for all n, and in this case
there is no difference between basic and full n-DAP.

Proposition 7.6. T has n-DAP for all n iff T has basic n-DAP for all n.

Proof. One direction is clear, since basic disjoint n-amalgamation is a special
case of disjoint n-amalgamation.

In the other direction, note first that there is a solution to the disjoint n-
amalgamation problem {pg | S € P~([n])} if and only if the partial type

{z # 2 | x,2’ distinct} U U Ps
SeP~([n])

is consistent. Hence, by compactness, we can reduce to the case that each tuple
of variables Tg is finite.

Let N =} gcp-(jn)) [Ts|- Renumber the z variables o, ..., 2y—1. Now each
type ps determines a type in some subset of these variables. Closing downward
under restriction to smaller sets of variables, we obtain a partial basic disjoint
N-amalgamation problem. By Lemma and basic disjoint N-amalgamation,
this partial amalgamation problem has a solution, a type pinj(zo,...,Zn—1)-
This type is a solution to the original n-amalgamation problem. O

We now prove that if the theory of a Fraissé limit has n-DAP for all n, then
it is pseudofinite. The proof involves a probabilistic construction of a structure
of size N for each N “from the bottom up”. This is the same idea as in the
proof of Lemmal|[7.5] but there we could fix an arbitrary k-type extending a given
coherent family of [-types for [ < k. Here we introduce randomness by choosing
an extension uniformly at random. Note that the measures py constructed in
the proof are not necessarily the uniform measures on (), but we obtain a
zero-one law for (un)new, which implies pseudofiniteness.

The probabilistic calculation is essentially the same as the one used in the
proof of the zero-one law for graphs (Theorem [6.2). The key point is that
the amalgamation properties allow us to make all choices as independently as
possible: the quantifier-free types assigned to subsets A and B of [N] are inde-
pendent when conditioned on the quantifier-free type assigned to AN B. It is
this independence which makes the calculation go through.

Theorem 7.7. Let K be a finitary Fraissé class such that T = Th(Mx) has
n-DAP for all n. Then every sentence in T has a finite model in K.

Proof. 1T will define a probability measure py on the finite set IC(IN) for each

N € w by describing a probabilistic construction of a structure My € K(N).
We assign k-types to each subset of size k from [N] by induction. Note

that by QE, assigning a k-type to a tuple ig,...,ig_1 from [N] is the same as
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picking a structure A € K(k). The k-type will be completely determined by
Oa(ig, .- yik—1)-

When k = 0, there is no choice: by HP and JEP (or by completeness of T}),
there is a unique empty structure in X(0), and a unique 0-type. When k = 1,
for each ¢ € [N], choose the 1-type of {i} uniformly at random from /C(1). Now
proceed inductively: having assigned [-types to all subsets of size [ with [ < k,
we wish to assign k-types. For each k-tuple ig,...,i,_1 of distinct elements
from [N], let P = {ps | S € P~([k])} be the collection of types assigned to all
proper subtuples. Since T has k-DAP, there is a solution to this basic disjoint
k-amalgamation problem. And there are finitely many, since they correspond to
a subset IC(k, P) C K(k) of solutions to the disjoint k-amalgamation problem.
We choose a solution from K(k,p) uniformly at random.

Continuing by induction to k = N, the resulting structure My is in K(N).
I claim that if ¢ is any axiom of T} then limy_, pn([¢]) = 1. This suffices,
by Lemma [6.1}

Each universal axiom ¢ € Tx has the form Vaq,...,z ¢¥(T), where ¢ is
quantifier-free and true on all k-tuples from structures in K. Since all substruc-
tures the random structure My are in K, ¢ is always satisfied by My, and so
pun([p]) =1 for all N.

Now consider the one-point extension axiom ¢4 p: VZ (04(Z) — Iy 05(T,v)).
Let @ be a tuple of |A]-many distinct elements from [N] and b any other ele-
ment. Conditioning on the event that My = 04(a), I claim there is a positive
probability e that My = 05(a,b).

Indeed, 05 specifies the diagram of the tuple ab among those allowed by K.
There is a positive probability (1/|K(1)|) that the correct 1-type is assigned to
b, and, given that the correct [-type has been assigned to all subtuples of @b
involving b of length [ < k, there is a positive probability (1/|XC(k, P)| for the
appropriate basic disjoint k-amalgamation problem P) that the correct k-type
is assigned to a given subtuple of length k involving b. Then ¢ is the product of
all these probabilities for 1 < k < |B].

Moreover, for distinct elements b and b, the events that ab and ab’ satisfy
fp are conditionally independent, since the types of tuples involving elements
from @ and b but not o’ are decided independently from those of tuples involving
elements from @ and &’ but not b, conditioned on the type assigned to a.

We finish with the same computation as in Theorem [6.2] by computing
the probability that ¢ is not satisfied by My. Conditioned on the event that
My = 04(a@), the probability that My F~ 3y 0p(a,y) is (1—e)V 14l since there
are N — | A choices for the element b, each with independent probability (1 —¢)
of failing to satisfy f5. Removing the conditioning, the probability that My &
Jy (04(@) — 0p(@,y)) for any given @ is at most (1—¢)V~I41 since the formula is
vacuously satisfied when @ does not satisfy 6 4. Finally, there are N4l possible
tuples @, so the probability that My W vZ 3y (04(T) — 0p(T,y)) is at most
NIAI(1 — ¢)N=I4l Since |A| is constant, the exponential decay dominates the
polynomial growth, and limy e pn ([7¢]) = 0, so limpy 00 pn ([¢]) = 1. O
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Lecture 8: More on n-DAP and pseudofiniteness

Let’s say a theory T has w-DAP if it has n-DAP for all n > 2. By Morleyizing,
we obtain the following consequence of Theorem [7.7}

Corollary 8.1. Any Ng-categorical theory T with w-DAP is pseudofinite.

Example 8.2. There are Ny-categorical theories T" which do not have w-DAP
but which admit Ro-categorical expansions 7" with w-DAP. By Theorem[7.7] 7"
is pseudofinite. And since the reduct of a pseudofinite theory is pseudofinite, it
follows that T is pseudofinite.

As a simple example, consider the theory of an equivalence relation with & in-
finite classes (k > 2). This theory fails to have 3-DAP just as in Example[7.3(1).
But if we expand the language by adding k& new unary relations C1,...,C}y in
such a way that each class is named by one of the C;, the resulting theory has
w-DAP.

For a more interesting example, the random graph (which has n-DAP for
all n, by Example has a reduct to a 3-hypergraph in the language R/,
where the relation R'(a,b,c) holds if and only if there are an odd number of
the three possible edges between a, b, and ¢. This structure turns out to be
homogeneous, hence the Fraissé limit of its age, which is the class of all finite
3-hypergraphs with the property that on any four distinct vertices a, b, ¢, and
d, there are an even number of the four possible 3-edges. Such a 3-hypergraph
is (rather confusingly) called a “two-graph” in the literature. The class of finite
two-graphs fails to have 4-DAP. Nevertheless, the theory of its Fraissé limit is
pseudofinite, as a reduct of the theory of the random graph.

This method of proving pseudofiniteness can be pushed a bit further.

Definition 8.3. A Fraissé class K is filtered by a chain o C Ky C Ky C ... if

each IC,, is a Fraissé class, and UnEw K, =K.

Proposition 8.4. Let K be a finitary Fraissé class filtered by {IC,, | n € w}.
For every sentence @, T |= @ if and only if T |= ¢ for all sufficiently large
n.

Proof. In the forward direction, suppose T |= 1. By compactness, finitely
many axioms ¢1,...,¢, of T¢ entail 9. It suffices to show that each ¢; is
entailed by Ty ~for all sufficiently large n, since then, for all sufficiently large
n, T = Ny @i, and T =1,

Since I, C K for all n, for each universal axiom ¢ € Ty, Tk, | o for
all n. Now let (A4, B) be a one-point extension in K with corresponding axiom
©wa,p. For large enough n, the structures A and B are in K, so (4, B) is also
a one-point extension in K, and T | E vaB.

For the backward direction, suppose T = 4 for all sufficiently large n, and
suppose for contradiction that T)¢ j= 1. Since T} is complete, T |= —tp. By the
forward direction, T = = for all sufficiently large n. This is a contradiction,
since all Ty ~are consistent. O
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Corollary 8.5. If a Fraissé class K is filtered by {K,, | n € w} and each generic
theory T, is pseudofinite, then the generic theory Tk is pseudofinite.

Proof. 1If T = 1, then Ty = 9 for sufficiently large n by Proposition and
hence v has a finite model. O

As a consequence, if K is filtered by {IC,, | n € w}, and each Tg ~admits an
expansion to an No-categorical theory with w-DAP, then T} is pseudofinite.

Example 8.6. Let K be the class of finite equivalence relations. Ty is the
theory of an equivalence relation with infinitely many infinite classes. This
theory has no Nyg-categorical expansion with w-DAP. But we can filter K by
letting KC;, be the class of finite equivalence relations with < n classes. Then T
is the theory of an equivalence relation with n infinite classes. This theory has
an Ng-categorical expansion with w-DAP by naming the classes (see Example
above). Corollary implies that T is pseudofinite.

Of course, it is not hard to see directly that T¢  is pseudofinite, since it is
axiomatized by sentences asserting that there are > n classes of size > n for all
n, and each of these axioms is true in a finite equivalence relation. We apply
this method to a less trivial theory: the theory Tg, of generic parametrized
equivalence relations.

Let £ be the language with two unary predicates, O and P (for “objects”
and “parameters”), and a ternary relation E,(y, z). Then Ky is the class of
finite structures with the property that for all @ in P, F,(y, z) is an equivalence
relation on O.

Lemma 8.7. Kt is a Fraissé class with DAP. Moreover, given fi: A — By
and fa: A < By and n € w such that for every b € P(By) or P(Bs), Ep has at
most n equivalence classes, there is a solution C' to the amalgamation problem
such that for all ¢ € P(C), E. has at most n equivalence classes.

Proof. Kteq clearly has HP. For DAP, suppose we have embeddings fi: A — B
and fo: A < By of structures in Krq, and assume that for every b € P(By)
or P(Bs),E, has at most n equivalence classes. We specify a structure C' with
domain AU(B;\ f1(A))U(B2\ f2(A4)) into which B; and B embed in the obvious
way. For each parameter a in P(C), we must specify an equivalence relation
on O(C) with at most n classes. If a is in P(A), it already defines equivalence
relations on By and Bsy. First, number the E,-classes in A by 1,...,¢. Then,
if there are further unnumbered F,-classes in By and C5, number them by
£+1,...,myand £+ 1,...,mo respectively. Note that my, mo < n. Now define
E, in O(C) to have max(mj, m;) classes by merging the classes assigned the
same number in the obvious way. The situation is even simpler if @ is not in
P(A). Say without loss of generality it is in P(B;). Then we can extend E,
to O(C) by adding all elements of O(B3 \ f1(4)) to a single existing F,-class.
JEP follows from AP by taking A to be the empty structure. O

We define T, foq tO be the theory of the Fraissé limit of K¢q. To show Tiq

is pseudofinite, we filter the class Kfq by the subclasses K, in which each
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equivalence relation in the parameterized family has at most n classes. If we
expand these classes by parameterized predicates naming each equivalence class,
the resulting theory has w-DAP.

Theorem 8.8. T¢,  is pseudofinite.

Proof. For n € w, let IC;, be the subclass of K¢ consisting of those structures
with the property that for all @ in P, the equivalence relation E, has at most n
classes. It follows from Lemma that each /C,, is a Fraissé class.

For any structure A in Kgq, if |O(A)| = N, then for all a € P(A), the
equivalence relation E, has at most N classes, so A € Ky. Hence Kfq =
Uncw Kn- S0 Kieq is a filtered Fraissé class, and by Corollary it suffices to
show that each Ty is pseudofinite.

Let £, be the expanded language which includes, in addition to the relations
O, P, and E, n binary relation symbols Ci(z,y),...,Cn(z,y). Let K/ be the
class of finite L] -structures which are expansions of structures in K, such that
for all a of sort P, each of the E,-classes is picked by one of the formulas C;(a,y).
Then K, is a Fraissé class by essentially the same argument as for C,,. Let M,
and M, be the Fraissé limits of IC,, and K, respectively.

We certainly have KC,, = {A|z | A € K},}, since every structure in K,, can
be expanded to one in K/, by labeling the classes for each equivalence relation
arbitrarily. Suppose now that (A, B) is a one-point extension in K,, and A’ is an
expansion of A to a structure in K],. If the new element b € B is in P(B), then
it defines a new equivalence relation Ej, on O(A) = O(B), and we can expand B
to B’ in K/, by labeling the Ej-classes arbitrarily. On the other hand, suppose
bisin O(B). Then for each parameter a, either b is an existing F,-class labeled
by Ci(a,y), in which case we set C;(a,b), or b is in a new FE,-class, in which
case we set Cj(a,b) for some unused C;. By a homework exercise, it follows
that Mn = M;L|£.

Finally, I claim that T}, has w-DAP. It certainly has 2-DAP, since it is
a Fraissé class with the disjgint amalgamation property. The behavior of the
ternary relation F,(y, z) is entirely determined by the behavior of the binary
relations C;(x,y), and an L/ -structure (P(A),O(A)) is in K], if and only if
for every a in P(A) and b in O(a), C;(a,b) holds for exactly one i. So any
inconsistency is already ruled out at the level of the 2-types. Since in a coherent
P~ ([n])-family of types for n > 3, every pair of variables is contained in one
of the types, we conclude that there are no inconsistencies, and every disjoint
n-amalgamation problem has a solution.

So Tk has disjoint n-amalgamation for all n, and hence it and its reduct
Tk, are pseudofinite by Theorem [7.7} O

Remark 8.9. A natural question is whether T foq 18, In fact, the almost-sure
theory for the class Krq for the uniform measures. Consider the sentence

VaVa' Yy vy (P(x) AP(&') AO(y) NO(y') Az # 2') — Tz (Ealy, 2) NEwr (¥, 2))),

which expresses that any two equivalence classes for distinct equivalence re-
lations intersect. This sentence is in T, , since it is implied by the relevant
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one-point extension axioms. But it has limit probability 0 with respect to the
uniform measures.

The fact from enumerative combinatorics is that the expected number of
equivalence classes in an equivalence relation on a set of size n, chosen uni-
formly, grows asymptotically as %(1 + 0(1)). Thus, most of the equivalence
relations E, have equivalence classes which are much smaller (with average size
approximately log(n)) than the number of classes, and the probability that every
E,-class is large enough to intersect every FEj-class nontrivially for all distinct
a and b converges to 0.

It’s a fact that if an Ng-categorical theory T has 3-DAP, it is simple with
trivial forking (supersimple of U-rank 1 and trivial acl). Simplicity is a property
that lives strictly between stability and NSOPs.

In fact, Shelah defined three more properties between simplicity and NSOP3,
called SOP{, SOP,, and TP;. It is now known that all three of these properties
are equivalent (in the sense that if a theory has any one of them, it has all
three). I won’t define these properties (or simplicity) here, but note that SOP;
and SOP; are defined in a completely different way than SOP,, for n > 3. We
have

stable = simple = NTP; = NSOP; 3 = NSOP3 = NSOP, = --- = NSOP.

It is an open problem whether NTP; = NSOPs5.

Recall that we know examples of pseudofinite Ry-categorical theories that are
stable (like the infinite pure set or the equivalence relation with infinitely many
infinite classes), and simple (like the random graph). The theory T¢,, is NTP;
and not simple. It was the first known example of a non-simple pseudofinite
No-categorical theory.

We saw earlier that if 7" is pseudofinite, then it is NSOP. As far as I know,
for every Ny-categorical theory 7" with NSOP and SOPj3, pseudofiniteness of T'
is an open problem. I do not know of any such theory for which the answer is
known (in either direction!).

Lecture 9: Weak amalgamation and genericity

We return now to the general setting of K-limits for an age /.

Given an age K and a property P of IC-limits, consider the following game
G(K, P) for two players. Player I picks a structure Ag € K. Then Player II
picks a structure A; € K containing Ag as a substructure. Then Player I picks
a structure A, € K containing A; as a substructure. The play continues in this
way, with the players taking turns constructing a chain

AgC A CAC ...

After w turns, we consider the KC-limit A, = (J,c,,
IT wins if A, satisfies P. Otherwise, Player I wins.

Aj; (see Lemma [1.6). Player
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Definition 9.1. We say the property P is generic (for K) if Player II has a
winning strategy in G(KC, P). We say a K-limit M is generic if the property
A, = M is generic.

Formally, a strategy is a function mapping a partial play of the game

to a structure A,11 € K containing A,, as a substructure.

For those who know some basic descriptive set theory, it is possible to define
a topological space Limy of K-limits with domain w in such a way that (under
some mild assumptions on K) the game G(IC, P) is essentially the Banach-Mazur
game in Limx. Then a property P is generic if and only if the set of K-limits
satisfying P is comeager in Limy, and a /C-limit M is generic if and only if the
isomorphism class of M is comeager in Limy. But the embedding game G(K, P)
has less technical baggage, so we will stick to this perspective for now.

Example 9.2. If K is an age, then the property Age(A,) = K is generic. Player
IT can follow the strategy in the proof of Theorem using JEP each turn to
embed the isomorphism representative B,, from K into As,11, and hence into
A,

Example 9.3. If £ is a Fraissé class, then the Fraissé limit My is generic.
Player II can follow the strategy in the proof of Theorem After Player 1
produces a structure As,, Player II can look at all f.g. substructures B of As,
and all embeddings B — C with C an isomorphism representative from X and
adds these to the list of tasks. By completing a task on teach turn, Player II
can force A, to be rich (and hence isomorphic to M) no matter how Player I

plays.

Example 9.4. It is possible for an age K to have a generic limit even when no
Fraissé limit exists (i.e., when it fails to have AP). For example, the infinitely
branching countable tree is a generic limit for the class Kropests- Indeed, on
turn 2n + 1, given a forest As,, Player II can add vertices to make the forest
connect, and then add further neighbors to every vertex in As, to ensure that
these vertices have degree > n. The direct limit of connected forests (trees) is
connected (a tree), and every vertex in the limit has infinite degree. So A, is
the infinitely branching countable tree. We saw in Examples and [2.8] that
Kiorests fails to have AP and has no Fraissé limit.

Lemma 9.5. If Player II has a winning strategy in the game G(IC, P), then
Player I has a winning strategy in the game G(IC,—P). The converse is true
when P is isomorphism invariant and K is an age.

Proof. Suppose Player II has a winning strategy o for G(K, P). We define
a winning strategy o’ for Player I in G(K,—P). Player I picks an arbitrary
structure Ay € K to be his first move, so writing ¢ for the empty play, o’ () = Ay.
Then we define 0/(Ag C A1 C -+ C Agpy1) = 0(A; € -+ C Agpyq). That is,
Player I “steals” Player II’s strategy, and plays as if he were the second player.
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After a run in which Player I uses ¢’, we have A, = U,,c,, An = U,>1 An, and
the chain Ay C A; C ... is a run in which Player II uses o, so A, satisfies P.
Thus Player I wins G(IC, = P).

Conversely, suppose Player I has a winning strategy o for G(K,—P), and
assume KC is an age and P is isomorphism invariant. We define a winning
strategy ¢ for Player II in G(K,P). Let A. = o(e), Player I’s first move
according to o. Given any structure Ag € K, by JEP we can pick A; € K with
Ap C A; and an embedding f: A, — Aj, and we can define ¢/(4p) = 4;. On
all subsequent turns, given Ag C - -+ C Ag,,, for n > 1 define A’ to be a structure
isomorphic to A; but with the elements of f(A.) replaced by the elements of
A,. Then if (A, C Ay C--- C A),)) = Af, ., define Ay, 11 to be a structure
isomorphic to Aj,,; but with the elements of A, replaced by the elements of
f(A*) Let U/(AO g tee g A2n) = A2n+1-

After a run in which Player IT uses o/, since A], = A,, for all n > 2, we have
Ay =Upew An = Upse An = AU, 50 47, and the chain A, C Ay C A3 C ...
is a run in which Player I uses o, so (by isomorphism invariance) A,, satisfies P
and Player 1T wins G(K, P). O

A property P is determined if one of the players has a winning strategy
in G(K, P). A non-determined property will correspond to a subset of Limy
without the Baire property, so it is necessarily somewhat exotic. Under mild
assumptions on K, every sentence of L, ., defines a Borel subset of Limx and
hence is determined. Since truth of sentences is isomorphism-invariant, the set
of generic sentences is a complete theory, even in first-order logic or even in
Lo w-

Corollary 9.6. Let K be an age. For every determined isomorphism-invariant
property P, either P or =P is generic for K.

Proof. 1f Player II has a winning strategy in G(K, P), then P is generic. Oth-
erwise, since P is determined, Player I has a winning strategy in G(KC, P). By
Lemma [9.5] since K has JEP and P is isomorphism invariant, Player II has a
winning strategy in G(X,—P). So =P is generic. O

Theorem 9.7. If K has a generic limit, it is unique up to isomorphism.

Proof. Suppose M and N are both generic IC-limits. Let o be a winning strategy
for Player II in G(K,2 M), and let 7 be a winning strategy for Player II in
G(K,= N). By Lemma Player I has a winning strategy 7/ in G(KC, % N).
Let A9 € A; C ... be a run in which Player I uses 7/ and Player II uses o.
Then this play is winning for Player I in G(K,% N) and winning for Player II
in G(K,=2 M) so M =A,=N. O

Our goal now is to characterize when K has a generic limit.

Definition 9.8. Let K be an age and A € K.

36



e An extension of A is a pair (B, f), where B € K and f: A — B is an
embedding. We define a preorder on embeddings by (B, f) < (C,g) if and
only if there exists h: B < C such that ho f = g. We could just as well
define a category of extensions (in category-theoretic language, this is the
slice category under A), but the preorder structure is all we need.

e Two extensions (C1,¢91) and (Cs, g2) of A are compatible if there exists
(D, h) with (C1,91) < (D, h) and (C2, g2) < (D, h).

e An extension (B, f) is a guide for A if for all (B, f) < (C1,¢1) and
(B, f) < (C3,g2), (C1,g1) and (Cs, g2) are compatible.

e A is an amalgamation base if (A,id,) is a guide for A.

Intuitively, a guide (B, f) has “enough information” about A to ensure amal-
gamation over A. If A is an amalgamation base, then A already holds all the
information about itself.

Definition 9.9. K has the weak amalgamation property (WAP) if every
A € K has a guide (B, f).

Unpacking the definition, we have the following: For all A € I, there exists
f: A< Bin K such that for all g;: B < C and ¢go: B < C5 in K there exist
hi: C1 <= D and hy: Cy — D in K such that hyogy 0o f =hyogoo f.

Bi>C1
N
A D
N A

B?CQ

It is possible that in the amalgam D, we have g1(h1(B)) # g2(h2(B)), i.e.,
the diagram may not commute over B.

Example 9.10. The class Kioests has WAP. For any forest A, there is an
embedding f: A < B, where B is connected (a tree). Then (B, f) is a guide
for A. In fact, any tree B is an amalgamation base in Korests-

Definition 9.11. K has the cofinal amalgamation property (CAP) if every
A € K embeds in some amalgamation base.

Note that I has AP if and only if every A € K is an amalgamation base.
And if f: A — B and B is an amalgamation base, then (B, f) is a guide for A.
So AP implies CAP implies WAP.

We have seen that Korests has CAP but not AP. I will now give an example
with WAP but not CAP.
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Example 9.12. Define a ternary relation R on Q by R(z,y,2) if and only if
x < zand y < z and = # y. Intuitively, R(x,y,z) means “x,y,z are distinct
and z is greatest.” Let K = Age(Q, R). K has WAP: Given A € K, we can pick
f:A— (Q,R) and pick some b € Q with b < f(a) for all @ € A. Then the
embedding of A in B = f(A)U{b} is a guide for A. But K has no amalgamation
base B with |B| > 2, so K does not have CAP.

Lecture 10: Weak richness and weak homogeneity

We now introduce the weakenings of -richness and K-homogeneity that corre-
spond to the weak amalgamation property.

Definition 10.1. Let M be a K-limit.

e M is weakly K-rich if for all A C¢, M there exists A C B C¢ o M such
that for any f: B — C with C € K, there exists g: C — M such that
(go f)|la=1ida. We call B an embedded guide for A.

o M is weakly K-homogeneous if Age(M) = K and for all A &, M
there exists A € B Cp, M such that for any embedding g: B — M,
there exists o € Aut(M) such that o|4 = g|a.

Note that the terminology “embedded guide” is different from the usage of
“oguide” in the definition of WAP, though they will turn out to be the same in
the proofs.

A bit of history: The notion of weak K-homogeneity (with K = Age(M)) was
introduced by Pabion under the name “prehomogeneity” in 1972. Example
above appeared the 1972 paper of Pabion, attributed to Pouzet. In 1994, Pouzet
and Roux proved the equivalence between prehomogeneity and genericity.

Independently, in the 1990s there began to be a great deal of interest in
generic automorphisms of homogeneous structures. Truss showed in 1992 that
CAP (for the class of structures in a Fraissé class K expanded by a partial
automoprhism) was sufficient to obtain a generic automorphism. The theorem
(originally due to Pouzet and Roux) that WAP characterizes the existence of a
generic limit was again obtained independently by Ivanov in 1999 (who called
it the “almost amalgamation property”) and by Kechris and Rosdendal in 2007
(under the name WAP).

Lemma 10.2. IfK is an age and M is a weakly rich K-limit, then Age(M) = K.

Proof. Since M is a K-limit, Age(M) C K. Let A € K, and let E = (&) Cr o M.
Let E C B Ctg. M be a witness to weak K-richness for M. By JEP for I,
there is some C' € K and embeddings f: B < C and g: A — C. By weak
K-richness, there is an embedding h: C' — M such that (ho f)|g = idg. Then
hog: A< M shows A € Age(M). O

Theorem 10.3. Let M and N be weakly rich K-limits. Suppose we have
ACBCryg Mand A C B' Csy. N, and f: A= A’ and g: B = B’ are
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isomorphisms with f C g. Assume B is an embedded guide for A. Then there
is an isomorphism p: M = N such that p|a = f.

Proof. Just as in Theorem we enumerate M = (m;)ie, and N = (n;)icw
and build an isomorphism by a back-and-forth argument. This time, we define a
sequence of isomorphisms f;: A; = A and ¢;: B; = B}, where A; C B; Cy o M
and A} C Bj C¢y. N. We require that f; C g;, f C f; C fig1, ni € A5, and
m; € Agiyo for all i € w. Note that we do not require g; C ¢;41. When 17 is
even, we assume B; is an embedded guide for A;, and when 7 is odd, we assume
B! is an embedded guide for A;.

At the end of the construction, we have |J
Uico, fi: M = N extending f.

Set Ay =A, By=B,Ay=A", By=DB, fo=f,and go = g.

At odd stage 2i + 1, we are given fo;: Ag; = A, and go;: Be; = B),;, with
By; an embedded guide for Ay;. Define A5, | = (Bj; U {n;}) Cre. N, and let
Abiq1 € By y Crg. N be an embedded guide for Ay, ;. Since N is a K-limit,
Ajip1: By € K.

Ai =M, U, A = N, and

1EW

M N
‘
AN
N inc
hoN
N
!
B2i+1
inc inc
!
A2i+1

Byy —— B,
2 g2i 20

inc inc

Agy —— AY;
24

Since By; is an embedded guide for Ay, and go;: By < By, , there exists
h: BéiJrl — M with (h o g2i)|A2i = ldA27 Let AQH_l = h(A/Qi+1) and B2i+1 =
h(Bj;,,). Then fa;41 = (h|A/2H1)*1 and go;41 = (h|BéHl)*1 are isomorphisms
Agip1 =AY and By = B, with foip1 © goir1. Since fo; = gaila,,.
f2i € f2i41. And Bj, | is an embedded guide for A, | by construction.

The construction is similar at even stage 2i + 2. O

Corollary 10.4. Let M be a K-limit. Then M is weakly rich if and only if M is
weakly homogeneous. Moreover if M and N are both weakly rich/homogeneous,
then M = N.

Proof. First, assume M is weakly homogeneous. Let A C¢, M. Then there
exists A C B Cp,. M witnessing weak homogeneity. I claim that B is an
embedded guide for A. Let f: B — C with C € K. Since Age(M) = K
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(this is part of the definition of weakly K-homogeneous), there is an embedding
g: C — M, but we may not have (g o f)|a = ida. Since (go f)|g: B — M,
by weak homogeneity, there exists o € Aut(M) such that o|s4 = (go f)|a. Let
g =0 gc)og: C— M. Then (¢ o f)|a = (07 ogo f)|la =ida.

The rest is a consequence of Theorem Suppose M is weakly rich. By
Lemma Age(M) = K. Let A C¢z. M, and let B be an embedded guide
for A. Given g: B < M, we have g: B = ¢(B) and g|a: A = g(A), so by
Theorem there is an isomorphism o € Aut(M) with o|4 = g|a.

Having proved that weakly rich and weakly homogeneous are equivalent
properties for IC-limits, let M and N be weakly rich. Pick some A C B C¢ . M
such that B is an embedded guide for A. Since Age(N) = K, there is an
embedding g: B — N. Let B’ = ¢g(B), so g: B~ B’, and let A’ = g(A) and
f=gla: A= A’. By Theorem [10.3] M = N. O

It follows from the proof of Corollary that the witnesses to weak homo-
geneity are exactly the embedded guides witnessing weak richness.

Theorem 10.5. Let K be an age with WAP. The following property of KC-limits
is generic: M is weakly rich, and whenever A C B Cy o A, and the inclusion
A — B is a guide, then B is an embedded guide for A.

Proof. We define a winning strategy for Player II in the game G (I, %), where *
is the property in the statement of the theorem Just as in Example we turn
the task structure in the proof of Theorem into a strategy, but modified to
replace richness with weak richness.

We fix an enumeration (Dy)xexc of the structures in I up to isomorphism.

Given a partial play of the game Cy C --- C CYy,, where Player I has just
played Cy,, Player II enumerates all triples (A;, B;, g;) where A; C B; C Cap,
the inclusion A; < Bj; is a guide, and g;: B; < Dy, is an embedding into one
of our isomorphism representatives. Player IT adds these triples as tasks (n, j)
to an array of tasks.

Player II then picks task t(n) = (¢, j) from the list. Thisis a triple (4;, B;, g;),
where A; C Bj C Cy; C Cayy, the inclusion A; — Bj is a guide, and g;: B; —
Dy, . Since A; — Bj is a guide, (Ca,,inc) and gj|A]. are compatible. Pick some
Esy41 with embeddings h': Ca, < Eapyq1 and hopi1: Dj — Eapqi. Finally,
let h': Eoptq1 <> Conyq be a guide for Eg,y1. We may assume that A" and h”
are inclusions, so Coy, C FEopt1 € Copyg-

After a run in which Player II follows this strategy, we construct a K-limit
Cw = Unew Cn- T claim that C,, satisfies .

First, we show that if A C B Cy, C,,, and the inclusion A C B is a guide,
then B is an embedded guide for A. Since B is f.g., there is some i € w such
that B C Cy;. Let g: B — D with D € K. We may assume that D = Dy is
one of our isomorphism representatives. Then the triple (4, B, g) was added to
the list of tasks at some stage, and completed at some stage n. So there is an
embedding hopy1: D < Co,41 such that he,41 0 g is equal to the inclusion of
A in Coy,41, as desired.

40



It remains to show that every A Cp, M has an embedded guide. Since A
is f.g., there is some i € w such that A C Cy; C Fo; 11 C Co;41 C C,,. Since the
inclusion Fo;11 C Cy;41 is a guide for Fa; 41, the inclusion A C Cy;41 is a guide
for A. From what we just showed above, Co;11 is an embedded guide for A. O

Theorem 10.6. Suppose K is an age which does not have WAP. Let M be a
KC-limit. The property that A, embeds in M is not generic.

Proof. We show Player I has a winning strategy in G(K,3f: A, — M).

Since K does not have WAP, there exists A € K with no guide. Player I
plays Ag = A on his first move. Let (f;);e,, enumerate the embeddings A — M.
On turn 2n with n > 0, Player II has just played As,_; with A C As, . Since
the inclusion inc: A < Ag,_; is not a guide for A, there exist g;: As,_1 — C;
with ¢ = 1,2 such that gi|4 and g2|4 are not compatible. We may assume each
g; is an inclusion.

If there is an embedding h: C; — M with (ho g1)|a = fa, Player I plays
As, = Cs. Otherwise, Player I plays Ag,, = C.

Now after a run on which Player I follows this strategy, suppose for contra-
diction that there exists f: A, < M. Then f|a: A — M is equal to f, for
some n € w. Let f/ = fla,,. If Ay, = Cq, then (f o g1)|la = fa = fn, s0
Ay, = Cy, contradiction. Thus A,,, = Cs, and we also have h: Cy < M such
that (ho g1)|la = fn. Letting D = (h(C1) U f'(C2)) Cig. M, h: C1 — D and
f': Cy — D show that C; and Cs are compatible over A, contradiction. O

Theorem 10.7. Let IC be an age. The following are equivalent.
(1) K has WAP.

(2) Weak richness is a generic property of IC-limits.

(3) There exists a weakly rich K-limit.

(4) There exists a generic KC-limit.

Proof. (1)=-(2): This is Theorem [10.5

(2)=(3) is clear.

(3)=(1): Let M be a weakly rich IC-limit. Let A € . Then there is an
embedding f: A — M. Let f(A) C B Cs, M be an embedded guide for f(A).
I claim that f: A — B is a guide for A. Given g;: B — Cy and g3: B — (s
with Cq, Cy € K, by weak K-richness there exist hy: C7 < M and hy: Co — M
such that (h; 0 g;)|pa) = idsea) for i = 1,2. Let D = (C1 U Cy) Crg. M. Then
DeK, h;:Cc—Dfori=1,2,and hyjogiof=hyogoo f.

(2)=(4): Suppose weak richness is a generic property. Let M be a weakly
rich -limit. Player II has a winning strategy in the game G(KC, weakly rich),
and by Corollary any weakly rich /C-limit is isomorphic to M, so Player 11
has a winning strategy in the game G(K,2 M). Thus M is generic.

(4)=(1): Suppose M is a generic K-limit. Then the property = M is generic,
so the weaker property 3f: A, < M is generic. By Theorem K has
WAP. U
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Remark 10.8. It follows from the proof of Theorem [I0.7] that if M is a generic
K-limit, then for A C B Cy,. M, the inclusion A C B is a guide for A if and
only if B is an embedded guide for A. Indeed, we proved in Theorem that
it is generic that every guide is an embedded guide, hence this is true in the
generic IC-limit. Conversely, since weak richness is generic, M is weakly rich,
and we proved in the (3)=(1) direction of Theorem that embedded guides
are guides in weakly rich KC-limits.

Lecture 11: Universal and generic limits, generic
automorphisms

Corollary 11.1. If I has a universal limit, then K has a generic limit.

Proof. Suppose K has a universal limit M, and assume for contradiction that K
has no generic limit. By Theorem[I0.7} K does not have WAP. By Theorem 10.6]
the property that A, embeds in M is not generic. Thus there exists some K-
limit which does not embed in M, contradicting universality. O

By Corollary whenever K has a universal limit, it must have a generic
limit. Sometimes the generic limit is itself universal — for example, this happens
when K has AP, since the Fraissé limit is both generic and universal. But the
generic limit need not be universal in generall We have the following implica-
tions, all of which are strict:

K has a
universal
generic limit

K has a _— K has a
universal limit generic limit

K has a —
Fraissé limit

Example 11.2. Recall that a graph is acyclic if it has no cycles. A graph
is linear if every vertex has degree at most 2. Normally we consider graphs
in the language £ = {R}, but a colored graph is a graph in the language
Lp = {R, P} augmented by an additional unary predicate (which is interpreted
arbitrarily).

e The class of finite graphs has a Fraissé limit (the random graph), as does
the class of colored graphs (this was a problem on Homework 1).

e The class of finite ayclic graphs (forests) has no Fraissé limits, but it
has a universal generic limit, namely the countable infinitely branching
tree. Genericity was Example [0.4] and universality was Example[2:4] The
same is true for finite acyclic colored graphs: the universal generic limit
is the countable infinitely branching tree colored so that each vertex has
infinitely many neighbors satisfying P and infinitely many satisfying —P.
In both cases, a guide for A is any finite tree containing A.
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e The class of finite linear acyclic graphs has a universal limit (and hence
a generic limit), but the generic is not universal. The generic limit is a
single infinite chain (the unique infinite connected linear acyclic graph),
since Player II has a winning strategy in the game G(I,connected). A
guide for A is a connected finite chain containing A. The universal limit
is the disjoint union of countably many infinite chains. Note that the
universal limit does not embed in the generic limit.

e The class of finite linear graphs (not necessarily acyclic) has the same
behavior as the previous example. The property of connectedness is no
longer generic, but the property that every vertex is contained in a finite
cycle is. A guide for A is a graph containing A which is a disjoint union
of cycles. The generic limit is the disjoint union of countably many cycles
of each finite size > 3. The universal limit is the same, but with infinitely
many chains as well.

e The class of finite colored linear graphs has a generic limit but no universal
limit. The generic limit is the disjoint union of countably many copies of
each finite colored cycle. Again, a guide for A is a graph containing A
which is a disjoint union of cycles. To see that there is no universal limit,
note that we can find 2%°-many colored infinite chains, none of which
embeds in any other. A countable limit contains at most countably many
infinite chains, and hence cannot be universal.

e Finally, the class of finite colored linear acyclic graphs has no generic
limit. We show that WAP fails. Let A be a graph with a single vertex v.
Suppose for contradiction that f: A < B is a guide for A. By extending
further, we may assume B is connected and that it is a chain with v as its
midpoint. Let C; extend B by adding vertices satisfying P to both ends
of the chain. Let Cy extend B by adding vertices satisfying =P to both
ends of the chain. Then C; and C5 are not compatible extensions of A.

In the case of finitary ages, we can characterize the behaviors above in terms
of the spaces of existential types.

Definition 11.3. Let T" be a theory. An existential type is a set of existential
formulas. An existential type is maximal if it is maximal under containment
among existential types consistent with 7". Let S2(T) be the spaces of maximal
existential types in n free variables. We topologize S2(T) by taking the basic
open sets to be [p(z1,...,2,)] = {p € S2(T) | ¢ € p} where ¢(x1,...,2,) is an
existential formula. An existential type p is isolated if there is an existential
formula ¢ such that [p] = {p}.

Fact 11.4. Suppose K is a finitary age. We work relative to Tx, the universal
theory of [C-limits.

(1) K has a generic limlt if and only if the isolated types are dense in S3(Tx)
for all n.
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(2) K has a universal limit if and only if S3(Tk) is countable for all n.

(3) K has a universal-generic limit if and only if every type is isolated in S (Tx)
for all n.

(4) K has a Fraissé limit if and only if every type is isolated by a quantifier-free
formula in S3(Tx) for all n.

Note the analogy with countable models of a countable complete theory T
case (1) corresponds to the case when T has a prime model, case (2) corresponds
to the case when T has a countable saturated model, and case (3) corresponds
to the case when T is Wg-categorical. Then case (4) corresponds to the case
when T is Np-categorical with quantifier elimination. Note that S3(Tx) is not
necessarily compact, so it is possible to have infinitely many types in S2(Tx),
each of which is isolated.

When S3(Tx) is countable, then Tx in fact admits a countable existentially-
saturated existentially closed model, which is a universal K-limit, and which is
unique up to isomorphism. This gives a canonical universal K-limit.

It is natural to wonder whether cases (2) and (3) in the Fact can be charac-
terized by “finitary diagrammatic properties” like AP and WAP. We interpret
the following theorem (which is as-yet unpublished joint work with Aristotelis
Panagiotopoulos) as saying the answer is no.

Theorem 11.5. Let £ = {R}, where R is a binary relation. In a suitable (Pol-
ish) space of ages in the language L, the sets {K | K has a universal limit} and
{K | K has a universal-generic limit} are complete coanalytic (I13-complete).

Many interesting examples of generic limits come from generic automor-
phisms.

Let K be a Fraissé class £. Let £, = £ U {p}, where p is a new binary
relation symbol. Let K, be the class of (A,p) where A € K and p is the graph
of a partial isomorphism, i.e., an L-isomorphism ¢: B = C where B and C are
substructures of A. The class K, is almost never a Fraissé class.

Definition 11.6. We say that the Fraissé limit My admits a generic auto-
morphism if IC, has a generic limit (M, p), where M = My and p is the graph
of an automorphism of M.

The existence of a generic automorphism of My is equivalent to the existence
of o € Aut(My) such that the conjugacy class {ror~! | 7 € Aut(My)} is
comeager in the topological group Aut(My).

Let us first consider generic automorphisms of (Q, <).

For any linear order (L, <) and an automorphism o € Aut(L), we define an
equivalence relation ~, by a ~, b if and only if there exists n € Z such that
o"(a) < b < o™ a) or 0" (a) < b < 0™(a). In other words, b is contained
in the convex hull of the orbit of a. Note that ~, partitions L into convex
equivalence classes. There are three types of classes:

(1) If o(a) = a, then [a]., = {a}.
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(2) If a < o(a), then for all n, 0™(a) < o™ 1(a). If b ~, a, with 0" (a) < b <
o™ (a), then b < 0" (a) < o(b), so b < o(b). Thus o is increasing on all
of [a]~, .

(3) If o(a) < a, a similar argument shows that o is decreasing on all of [a]~ .

A generic automorphism of (Q, <) is one in which all three types of equiva-
lence classes described above are dense in the order on the equivalence classes
(i.e., between any two equivalence classes, classes of all three types appear). In
fact, letting p be the graph of a generic automorphism, (Q, <,p) is a universal
limit of ]CLO,p-

The random graph also has a generic automorphism, but the picture is rather
different.

Definition 11.7. A Fraissé class K has the extension property for partial
automorphisms (EPPA) if every A € K embeds in some B € K such that
every partial isomorphism of A extends to an automorphism of B.

Note that K10 does not have EPPA. Every finite linear order is rigid, so
non-trivial partial isomorphisms of A cannot extend to automorphisms of any
finite B.

The following theorem is due to Hrushovski. I'll present a simpler proof due
to Herwig and Lascar.

Theorem 11.8. The class K of finite graphs has EPPA.

Proof. First, for a finite set X and n € w, we define I'(X, n) to be the graph
whose vertices are subsets of X of size n, such that there is an edge between Y
and Z if and only if Y N Z # @. Note that if o is a permutation of X, then the
map o*: I'(X,n) = I'(X,n) by Y — o(Y) is an automorphism of T'(X, n).

Now let A = (V,R) be a finite graph. Let n € w such that n > 2 and
n > deg(v) for all v € A. We turn A into a multi-graph with self-loops: For
each v € A with deg(v) < n, add self-loops to v until deg(v) = n. The resulting
multi-graph is A’ = (V, R’). Now let B =T(R’,n).

Define f: A — B by f(v) = {e € R’ | v € e}. This is an embedding.
Indeed, if v # w, since degp,/ (v) = degr/ (w) = n > 2, and there is at most one
edge between v and w, f(v) # v(w). And we have {v,w} € R if and only if
{v,w} € f(v) N f(w) if and only if there is an edge between f(v) and f(w) in
B

Now let C' and D be subgraphs of A and ¢: C' — D an isomorphism. We
use ¢ to define a permutation of R’. For each edge e = {v, w} in C, we map e to
p(e) = {p(v), p(w)}, which is an edge in D. For each v € C, let Ry, , be the set
of edges in R’ containing v and no other element of C, and similarly for D. Note
that the sets R ,, are pairwise disjoint, and |R¢ | = |R], ()|, since degp (v) =
degr/(p(v)) = n. So we can pick a bijection R, — Rj, () arbitrarily for
each v. Finally, we extend the partial permutation of R’ constructed so far to
an arbitrary permutation o: R’ — R’, and thus obtain an automorphism ¢* of
(R, n).
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It remains to check that ¢* extends ¢, in the sense that for all v € C|
a*(f(v)) = f(e(v)). Indeed, for each edge e € f(v), if e € C, then since v € e,
p(v) € p(e),soa(e) € f(p(v)). Andife ¢ C, thene € R, s00(e) € R’D,w(v),
and o(e) € f(p(v)). It follows that o*(f(v)) = f(p(v)), as desired. O

Definition 11.9. Given a Fraissé class K and n € w, let K}, , be the class of all
(A,p1,...,pn), where A € K and each p; is the graph of a partial isomorphism.
We say K has ample generic automorphisms (or ample generics) if for
every n € w, K, has a generic limit (M, p1,...,pn), where M = My and each
p; is the graph of an automorphism of M.

Corollary 11.10. K¢ has ample generics.

Proof. With K = K¢, it suffices to show that KCp, ,, has WAP. Let (A, R, p1,...,pn) €
Kpn- Let f: (A R) — (B,R) witness EPPA. For each partial isomorphism
p;, pick some extension of it to an automorphism o; € Aut(B). I claim that
(B,R,01,...,0,) is an amalgamation base. Indeed, given two extensions C
and Cy of B, we can amalgamate C7 and Cy freely over B. O

Note that the generic limit (G, R, p1,...,pn) can be built as a chain of finite
EPPA witnesses, in which the partial isomorphisms coded by the p; are in fact
total. It follows that every orbit for each generic automorphism is finite. Thus
in this case the generic limit (G, R, p1, .. .,Pn) is not universal, since there exist
automorphisms of countable graphs with infinite orbits.
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