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In any theory in which forking equals dividing for complete types (i.e., |̂ f = |̂ d),

a |̂ d
C
b implies acl(Ca) |̂ d

acl(C)
acl(Cb), by Proposition 2 below. In particular, this

is true in every simple theory. In this note, we show that in an arbitrary theory,

we cannot in general add acl to the base or the right hand side of |̂ d. That is, it is

possible to have a |̂ d
C
b but a 6 |̂ d

acl(C)
b, and it follows from base monotonicity for

dividing that also a 6 |̂ d
C

acl(Cb). Our example is in the context of an ℵ0-categorical
theory T in a finite relational language. Further, we show T is SOP3 and NSOP4.
This is the first example we are aware of in which forking is not equal to dividing
for complete types in the context of an NSOP theory.

Proposition 1. If a |̂ d
C
b, then acl(Ca) |̂ d

C
b.

Proof. Recall that a |̂ d
C
b if and only if for any C-indiscernible sequence I starting

with b, there exists a Ca-indiscernible sequence I ′ with tp(I ′/Cb) = tp(I/Cb).

Assume a |̂ d
C
b, and let I be a C-indiscernible sequence starting with b. By

the characterization of dividing independence, there is a Ca-indiscernible sequence
I ′ with tp(I ′/Cb) = tp(I/Cb). But any A-indiscernible sequence is automat-
ically acl(A)-indiscernible, so I ′ is acl(Ca)-indiscernible. This establishes that

acl(Ca) |̂ d
C
b, by the same characterization of dividing independence. �

Proposition 2. If a |̂ f
C
b, then acl(Ca) |̂ f

acl(C)
acl(Cb).

Proof. Recall that a |̂ f
C
b if and only if for any d, there is some a′ with tp(a′/Cb) =

tp(a/Cb) such that a′ |̂ d
C
bd.

Assume a |̂ f
C
b. We first show that acl(Ca) |̂ f

C
b. Let d be an arbitrary tuple.

Then there is some a′ with tp(a′/Cb) = tp(a/Cb) such that a′ |̂ d
C
bd. By Proposi-

tion 1, acl(Ca′) |̂ d
C
bd. But tp(a′/Cb) = tp(a/Cb) implies that tp(acl(Ca′)/Cb) =

tp(acl(Ca)/Cb) (as long as we enumerate these sets by tuples in a coherent way).

So acl(Ca) |̂ f
C
b.

Replacing a by an enumeration of acl(Ca), it suffices to show that if a |̂ f
C
b,

then a |̂ f
acl(C)

acl(Cb).

The next step is to show that a |̂ f
C

acl(Cb). Since a |̂ f
C
b, we can find a real-

ization a′ of a non-forking extension of tp(a/Cb) to a type over acl(Cb). Let σ be
an automorphism of the monster model which fixes Cb pointwise and moves a′ to

a. Then σ fixes acl(Cb) setwise, so a |̂ f
C

acl(Cb).

Finally, by base monotonicity, since C ⊆ acl(C) ⊆ acl(Cb), a |̂ f
acl(C)

acl(Cb), as

desired. �
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The example

Consider a language L′ with:

• Three sorts: O, G, and C.
• Two constant symbols 0 and 1 of type C.
• A relation symbol R : G×G× C.
• A relation symbol E : O ×G× C.

Let L be the sub-language of L′ which omits the constant symbols 0 and 1.
Let K be the class of finite L′-structures satisfying the following conditions:

• 0 6= 1, and for all c ∈ C, c = 0 or c = 1.
• The binary relations R(x, y, 0) and R(x, y, 1) are disjoint graph relations

on G, i.e., they are each symmetric and anti-reflexive, and for all v, w ∈ G,
it is not the case that R(v, w, 0) and R(v, w, 1).
• For all v, w ∈ G and c ∈ C, if R(v, w, c), then there is no o ∈ O such that
E(o, v, c) and E(o, w, c).

It is easy to check that K is a Fräıssé class with free amalgamation. Let M ′ be
the Fräıssé limit of K, and let T ′ = Th(M ′). Let M and T be the reducts of L of
M ′ and T ′. We observe the following:

• T is ℵ0-categorical. Indeed, it is a reduct of a Fräıssé limit of a class of
finite structures in a finite language with no function symbols.
• For any A ⊆ M , acl(A) = A ∪ C. Indeed, A ∪ C is the domain of a sub-

structure of M ′. Since amalgamation in K is disjoint, A∪C is algebraically
closed in M ′, so it remains algebraically closed in the reduct M .
• There is an automorphism σ of M swapping the two elements of C. Proof:

back and forth.
• For any finite tuples a and b from M , tp(a) = tp(b) if and only if there is an

isomorphism of L-structures f : acl(a)→ acl(b) such that f(a) = b. Indeed,
suppose f : acl(a) → acl(b) is such an isomorphism. If f is the identity on
C, then it is an isomorphism between L′-substructures of M ′, so it extends
to an automorphism of M ′ moving a to b, and hence tp(a) = tp(b). If
f swaps the two elements of C, we note that f ◦ σ−1 : σ(acl(a)) → acl(b)
is an isomorphism which is the identity on C and such that f(σ(a)) = b.
Extending f ◦σ−1 to an automorphism of M ′ as above, then pre-composing
with σ, we find an automorphism of M moving a to b.

By ℵ0-categoricity, to understand dividing and the properties SOPn in T , it
suffices to work in M . We will call the elements of C 0 and 1, even though these
constant symbols are not in L.

Claim 1. T is SOP3 and NSOP4.

Proof. Since T ′ is the theory of an ℵ0-categorical Fräıssé limit with free amalga-
mation, it is NSOP4. Therefore its reduct T is also NSOP4. We will show that T
is SOP3 using the “two formula” formulation. Let x be a variable of type O, y, y′

variables of type G, and z a variable of type C. Let ϕ(x; y, y′, z) be the formula
E(x, y, z), and let ϕ′(x; y, y′, z) be the formula E(x, y′, z). Let I = (bi, b

′
i, ci)i∈ω

be a sequence such that R(b′i, bj , 0) if and only if i < j, and ci = 0 for all i ∈ I.
Then for all n ∈ ω, we have {ϕ(x; bi, b

′
i, ci) | i < n} ∪ {ϕ′(x; pj , p

′
j , cj) | j ≥ n} is

consistent, but for all i < j, {ϕ′(x; pi, p
′
i, ci), ϕ(x; pj , p

′
j , cj)} is inconsistent. This

establishes SOP3. �
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For the remainder of the note, fix some a ∈ O and b ∈ G such that E(a, b, 0).

Claim 2. a |̂ d∅ b.

Proof. By the classification of types obtained above, tp(a/b) is isolated by the
formula ϕ(x, b) : (∃z : C)E(x, b, z). It suffices to show this formula does not divide
over ∅.

Let I = (bi)i∈ω be an indiscernible sequence in tp(b/∅).
Case 1: M |= ¬R(bi, bj , 0) for all i 6= j. Then we can find some a′ ∈ O with

M |= E(a′, bi, 0), and hence M |= ϕ(a′, bi), for all i ∈ ω.
Case 2: Otherwise, by indiscernibility, M |= R(bi, bj , 0) for all i 6= j. Since

R(x, y, 0) and R(x, y, 1) are disjoint relations, M |= ¬R(bi, bj , 1) for all i 6= j. So
we can find some a′ ∈ O with M |= E(a′, bi, 1), and hence M |= ϕ(a′, bi), for all
i ∈ ω. �

Claim 3. a 6 |̂ d
acl(∅)

b.

Proof. Note that acl(∅) = C, so tp(a/acl(∅)b) contains the formula E(x, b, 0). It
suffices to show that this formula divides over C.

By the classification of types obtained above, all elements of G have the same
type over C. Let (bi)i∈ω be a sequence of elements of G such that for all i 6= j,
R(bi, bj , 0). Then {E(x, b, 0) |∈ ω} is 2-inconsistent, which witnesses dividing. �

Corollary. In T , forking is not equal to dividing for complete types.

Proof. By Claim 2, it suffices to show that a 6 |̂ f∅ b. Suppose for contradiction that

a |̂ f∅ b. By Proposition 2, acl(a) |̂ f
acl(∅)

acl(b), and by monotonicity, a |̂ f
acl(∅)

b,

so a |̂ d
acl(∅)

b, contradicting Claim 3. �


