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Outline

Goal: Generalize first-order logic, in order to widen the scope of model
theory to objects in more general categories (especially categories of
profinite objects — “cologic”).

Here’s the plan:

Classical first-order logic - what are we generalizing?

The syntax and semantics of FOC

Example: FOC = first-order, when
C = finitely presentable L-structures

Locally finitely presentable categories

Example: The “cologic” of profinite groups

Hyperdoctrines, proofs, and completeness

Adding relational structure

Example: Homogeneous “costructures”
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Classical first-order logic: Languages

First-order logic starts with a language L, consisting of a set of function
symbols F and a set of relation symbols R.

Similarly, each function symbol f ∈ F has an arity ar(f) ∈ N.
0-ary function symbols are called constant symbols.

Each relation symbol R ∈ R has an arity ar(R) ∈ N.
0-ary relation symbols are called proposition symbols.

Example: The language of ordered groups is LOG = {e, ·,−1 ,≤}.
e is a constant symbol,

· is a binary function symbol,
−1 is a unary function symbol, and

≤ is a binary relation symbol.
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Classical first-order logic: Terms

Let x = (x1, . . . , xn) be a finite tuple of variables (from some infinite set
of variables in the background). We call this a context.

Given a language L and a context x, the set of L-terms in context x is
defined inductively:

A variable xi is a term.

A constant symbol c is a term.

If f is a function symbol and t1, . . . , tar(f) are terms, then
f(t1, . . . , tar(f)) is a term.

Example: LOG-terms in context (x, y, z) include:

e

x · (y · z)
x−1 · e−1, etc.
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Classical first-order logic: Formulas

An atomic formula in context x is:

> or ⊥,

t1 = t2, where t1 and t2 are formulas in context x, or

R(t1, . . . , tar(R)), where R is a relation symbol and t1, . . . , tar(R) are
terms in context x.

A formula in context x is:

(ϕ ∧ ψ), where ϕ and ψ are formulas in context x,

(ϕ ∨ ψ), where ϕ and ψ are formulas in context x,

¬ϕ, where ϕ is a formula in context x, or

∃y ϕ, where ϕ is a formula in context xy.

Note that the quantifier changes the context!

We also write (ψ → θ) as shorthand for (¬ψ ∨ θ)
and ∀y ϕ as shorthand for ¬∃y ¬ϕ.
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Classical first-order logic: Semantics

Given a language L, an L-structure is a set A (the domain) together with
interpretations of the symbols in L:

A function fA : Aar(f) → A for every function symbol f .

A relation RA ⊆ Aar(R) for every relation symbol R.

If A is an L-structure and x is a context, an interpretation of x is a
function x→ A, i.e. an assignment of elements of A to the variables in x.
We write Ax for the set of interpretations of x in A.

L-terms and formulas have an obvious semantics in L-structures:

Every L-term t in context x gives rise to a function tA : Ax → A

Every L-formula ϕ in context x defines a subset ϕ(A) ⊆ Ax.

If an interpretation a is in ϕ(A), we write A |= ϕ(a).

Alex Kruckman (IU Bloomington) Logic and cologic over a category Wesleyan, October 19, 2017 6 / 39



Classical first-order logic: Semantics

Given a language L, an L-structure is a set A (the domain) together with
interpretations of the symbols in L:

A function fA : Aar(f) → A for every function symbol f .

A relation RA ⊆ Aar(R) for every relation symbol R.

If A is an L-structure and x is a context, an interpretation of x is a
function x→ A, i.e. an assignment of elements of A to the variables in x.
We write Ax for the set of interpretations of x in A.

L-terms and formulas have an obvious semantics in L-structures:

Every L-term t in context x gives rise to a function tA : Ax → A

Every L-formula ϕ in context x defines a subset ϕ(A) ⊆ Ax.

If an interpretation a is in ϕ(A), we write A |= ϕ(a).

Alex Kruckman (IU Bloomington) Logic and cologic over a category Wesleyan, October 19, 2017 6 / 39



Classical first-order logic: Semantics

Given a language L, an L-structure is a set A (the domain) together with
interpretations of the symbols in L:

A function fA : Aar(f) → A for every function symbol f .

A relation RA ⊆ Aar(R) for every relation symbol R.

If A is an L-structure and x is a context, an interpretation of x is a
function x→ A, i.e. an assignment of elements of A to the variables in x.
We write Ax for the set of interpretations of x in A.

L-terms and formulas have an obvious semantics in L-structures:

Every L-term t in context x gives rise to a function tA : Ax → A

Every L-formula ϕ in context x defines a subset ϕ(A) ⊆ Ax.

If an interpretation a is in ϕ(A), we write A |= ϕ(a).

Alex Kruckman (IU Bloomington) Logic and cologic over a category Wesleyan, October 19, 2017 6 / 39



Example: Semantics in ordered groups

Let (G, e, ·,−1 ,≤) be a (right)-ordered group, viewed as an LOG-structure
in the obvious way.

If t is the term (((x · y) · x−1) · y−1), then tG : G(x,y) ∼= G2 → G is
the commutator function.

If ϕ is the formula ∀y (x · y = y · x), then ϕ(G) ⊆ Gx ∼= G is the
center, i.e. for a ∈ G, G |= ϕ(a) if and only if a ∈ Z(G).

A sentence is a formula in the empty context. Since there are no variables
to interpret, a sentence is either true or false in an L-structure.

G |= ∀x∀y ∀z ((x ≤ y)→ (x · z ≤ y · z)).

G |= ∀x∀y (x · y = y · x) if and only if G is abelian.
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Generalizing first-order logic

The category of finite sets (technically, finite subsets of the infinite set of
variables), and its relationship to the category of all sets (domains of
structures) is baked into first-order logic.

First-order formulas explore how infinite structures are built up from finite
pieces, via interpretations: maps from contexts to domains.

We seek to generalize classical first-order logic by replacing the category of
finite sets with a (somewhat) arbitrary category C of “contexts”, sitting
inside a larger category D of “domains”.
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FOC: Syntax

Let C be a category, called the category of contexts.

Define the logic FOC inductively. For every object x ∈ C, a formula in
context x is:

>x or ⊥x.

(ψ ∧ θ), (ψ ∨ θ), or ¬ψ, where ψ and θ are formulas in context x.

∃fψ, where f : x→ y is an arrow in C and ψ is a formula in context y.

We can also define (ψ → θ) as (¬ψ ∨ θ) and ∀fψ as ¬∃f¬ψ.

Now suppose C is a subcategory of D, called the category of domains.

If x is a context in C and M is a domain in D, an arrow a : x→M is
called an interpretation of x in M .
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FOC: Semantics

We give a semantics in D for the logic FOC by defining the relation
M |= ϕ(a) inductively. For every domain M ∈ D, every formula ϕ in
context x, and every interpretation a : x→M ,

If ϕ is >x, then M |= ϕ(a). If ϕ is ⊥x, then M 6|= ϕ(a).

If ϕ is (ψ ∧ θ), then M |= ϕ(a) iff M |= ψ(a) and M |= θ(a).

If ϕ is (ψ ∨ θ), then M |= ϕ(a) iff M |= ψ(a) or M |= θ(a).

If ϕ is ¬ψ, then M |= ϕ(a) iff M 6|= ψ(a).

If ϕ is ∃fψ, for f : x→ y, then M |= ϕ(a) iff there exists b : y →M
such that bf = a and M |= ψ(b).

y
∃b //M

x

f

OO

a

>>
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Example: L-structures

Note that the basic logic FOC has:

No notion of language (relation and function symbols).

No interesting atomic formulas!

Nonetheless, if C is reasonably complicated, FOC can be interesting.

Fix a first-order language L.
D, the category of L-structures (and L-homomorphisms).
C, the full category of finitely presentable L-structures.

Theorem

FOC , with semantics in D, has essentially the same expressive power as
first-order logic in the language L.
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Free L-structures

An L-homomorphism is a function σ : A→ B such that

For all k-ary function symbols f ∈ F and all a1, . . . , ak ∈ A,
σ(fA(a1, . . . , ak)) = fB(σ(a1), . . . , σ(ak)).

For all k-ary relation symbols R ∈ R and all a1, . . . , ak ∈ A,
(a1, . . . , ak) ∈ RA =⇒ (σ(a1), . . . , σ(ak)) ∈ RB.

For any finite context x, there is a free L-structure F (x) generated by x.
Domain: terms in context x.
Function symbols: interpreted as term formation
Relation symbols: interpreted as ∅.

Universal property: An L-homomorphism F (x)→ A is determined
uniquely by an interpretation a : x→ A, by t 7→ tA(a).
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Finitely presentable L-structures

For any finite context x and finite set ∆ of atomic formulas in context x,
there is a finitely presented L-structure 〈x|∆〉.

Universal property: An L-homomorphism 〈x | ∆〉 is determined uniquely
by an interpretation a : x→ A such that A |= δ(a) for all δ ∈ ∆.

〈x|∆〉 is obtained as the quotient of F (x) by the least congruence
(equivalence relation respecting the function symbols) generated by the
instances of equality in ∆, with relations holding as prescribed by ∆.

An L-structure is finitely presentable if is isomorphic to 〈x | ∆〉 for some
finite x and ∆.
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Translation: First-order to FOC

Proof of Theorem:

We translate a first-order formula ϕ in context x to an FOC formula in
context F (x).

If ϕ is atomic, let ϕ̂ be ∃q>〈x|{ϕ}〉, where q : F (x)→ 〈x | {ϕ}〉 is the
obvious map.

If ϕ is ψ ∧ θ, ψ ∨ θ, or ¬ψ, let ϕ̂ be ψ̂ ∧ θ̂, ψ̂ ∨ θ̂, or ¬ψ̂, respectively.

If ϕ is ∃y ψ, where ψ is a formula in context xy, let ϕ̂ be ∃iψ̂, where
i : F (x)→ F (xy) is the obvious map.

〈x | {ϕ}〉 ∃b //M

T (x)

q

OO

a

;; T (xy)
∃b //M

T (x)

i

OO

a

<<
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Translation: FOC to first-order

We translate an FOC formula in context A ∼= 〈x | ∆〉 to a first-order
formula in context x.

If ϕ is >A, let ϕ̃ be >. If ϕ is ⊥A, let ϕ̃ be ⊥.

If ϕ is ψ ∧ θ, ψ ∨ θ, or ¬ψ, let ϕ̃ be ψ̃ ∧ θ̃, ψ̃ ∨ θ̃, or ¬ψ̃, respectively.

If ϕ is ∃fψ, where f : A→ B and ψ is a formula in context B:

Pick a finite presentation B ∼= 〈y | ∆′〉.
For each xi, pick a term ti such that tBi (y) = f(xi).
Let ϕ̃ be

∃y1 . . . ∃yn

(( ∧
δ∈∆′

δi(y)

)
∧

(
m∧
i=1

xi = ti(y)

)
∧ ψ̃(y)

)
.

B
∃b //M

A

f

OO

a

>>
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Locally finitely presentable categories

Question: Returning to general C and D, what properties do we need to
get a well-behaved logic FOC?

For the rest of this talk, let’s assume:

C has finite colimits.

The objects of D are all directed colimits along diagrams in C.

Every object x ∈ C is finitely presentable in the categorical sense:
HomD(x,−) preserves directed colimits (every map x→ lim−→ yi
factors through some yi).

In other words,

D is equivalent to ind−C, the free co-completion of C under formal
directed colimits.

D is a locally finitely presentable category, and C is equivalent to its
full subcategory of finitely presentable objects.

Alex Kruckman (IU Bloomington) Logic and cologic over a category Wesleyan, October 19, 2017 16 / 39



Locally finitely presentable categories

Question: Returning to general C and D, what properties do we need to
get a well-behaved logic FOC?

For the rest of this talk, let’s assume:

C has finite colimits.

The objects of D are all directed colimits along diagrams in C.

Every object x ∈ C is finitely presentable in the categorical sense:
HomD(x,−) preserves directed colimits (every map x→ lim−→ yi
factors through some yi).

In other words,

D is equivalent to ind−C, the free co-completion of C under formal
directed colimits.

D is a locally finitely presentable category, and C is equivalent to its
full subcategory of finitely presentable objects.

Alex Kruckman (IU Bloomington) Logic and cologic over a category Wesleyan, October 19, 2017 16 / 39



Locally finitely presentable categories

Question: Returning to general C and D, what properties do we need to
get a well-behaved logic FOC?

For the rest of this talk, let’s assume:

C has finite colimits.

The objects of D are all directed colimits along diagrams in C.

Every object x ∈ C is finitely presentable in the categorical sense:
HomD(x,−) preserves directed colimits (every map x→ lim−→ yi
factors through some yi).

In other words,

D is equivalent to ind−C, the free co-completion of C under formal
directed colimits.

D is a locally finitely presentable category, and C is equivalent to its
full subcategory of finitely presentable objects.

Alex Kruckman (IU Bloomington) Logic and cologic over a category Wesleyan, October 19, 2017 16 / 39



Locally finitely presentable categories

Definition (Gabriel & Ulmer)

A category D is locally finitely presentable (LFP) if:

It is co-complete.

Every object is a directed colimit of finitely presentable objects.

The full subcategory F of finitely presentable objects is essentially
small, i.e. there is a set of isomorphism representatives of F .

Examples:

Set; SetX , for any set X; DB, for any LFP D and small category B.

StrL; Grp; Ring; Poset; Cat; ModT , where T is a first-order universal
Horn theory.

The duals of ProFinSet ∼= Stone ∼= Boolop, ProFinGrp, and pro−C,
the free completion of a small category C under formal codirected
limits (a.k.a inverse limits).
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Cologic

Many of the standard examples of LFP categories are categories of
L-structures for appropriate languages L.

Similarly to how FOC is essentially equivalent to first-order logic when D is
the category of L-structures, we don’t really get anything new when we
look at FOC over these categories.

To get something more interesting, let’s focus on the last kind of example:
categories of the form D = pro−C.

If Dop is LFP, we can form the logic FOCop with semantics in Dop.

In D, an interpretation of the context x in the domain M is a map
a : M → x.

“Coformulas” (formulas of FOCop) explore how the domain M ∈ D is built
as an inverse limit, via its maps to contexts in C.
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Example: The cologic of profinite groups

Consider the concrete example of the LFP category D = ProFinGrpop, the
finitely presentable objects of which are exactly C = FinGrpop. Here are
some examples of properties that can be expressed in FOFinGrpop :

Given a finite group H and a proper subgroup H ′ � H, let iH′ be the
inclusion map. Then the following formula ψH in context H expresses that
a map G → H is surjective: ∧

H′�H

¬∃iH′>H′

A sentence is a formula in the initial context (the terminal group 0).
Letting q : C2 → 0 be the trivial map and q′ : C4 → C2 be the quotient
map, the following sentence asserts that every quotient of G isomorphic to
C2 factors through a quotient of G isomorphic to C4:

∀q(ψC2 → ∃q′ψC4)
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Example: The cologic of profinite groups

In an influential unpublished paper, “The elementary theory of regularly
closed fields”, Cherlin, van den Dries, and Macintyre introduced a
“cologic” of profinite groups (e.g. Galois groups) in order to study the
model theory of pseudo-algebraically closed (PAC) fields.

CDM cologic is just ordinary first-order logic on a multi-sorted structure
encoding the full inverse system of finite quotients of a profinite group G:

One sort for each n ≥ 1. Sort n consists of the disjoint union of all
finite quotients of G of size n.

A ternary relation ·n for each sort n, such that ·n(x, y, z) iff all three
elements live in the same finite quotient of size n, and x · y = z.

A binary relation πm,n for each pair of sorts m ≥ n, such that
πm,n(x, y) iff x ∈ H1 of size m, y ∈ H2 of size n, and the quotient
map πH2 : G → H2 factors through the quotient map πH1 : G → H1,
as πH2 = ρ ◦ πH1 , and ρ(x) = y.
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Example: The cologic of profinite groups

We say that two structures are elementarily equivalent if they satisfy the
same sentences.

Theorem

Two profinite groups G and G′ are elementarily equivalent in the sense of
CDM cologic if and only if they are elementarily equivalent in the sense of
FOFinGrpop .

There is not a straightforward translation between formulas of CDM
cologic and formulas of FOFinGrpop . Instead, it is easiest to prove this
theorem by an Ehrenfeucht–Fräıssé game argument.

So the logic FOFinGrpop provides a natural replacement for the somewhat
ad hoc CDM cologic, and it easily generalizes to other kinds of profinite
structures.
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Proof theory

I’ll describe a sequent calculus proof system for FOC .

A sequent has the form ϕ⇒x ψ, where ϕ and ψ are formulas in context x.

A proof rule has the form:

ϕ1 ⇒x1 ψ1 . . . ϕk ⇒xk ψk
ϕ∗ ⇒x∗ ψ∗

rule

It means that given the k sequents above the line (possibly k = 0), you
can conclude the sequent below the line.
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Substitution

It will be convenient to introduce a new formula-building operation:
“substitution”.

Syntax: If ϕ is a formula in context x and f : x→ y is an arrow in C, then
[ϕ]f is a formula in context y.

Semantics: Given a domain M and an interpretation b : y →M ,

M |= [ϕ]f (b) iff M |= ϕ(bf).

y
b //M

x

f

OO

bf

>>

It will follow from our proof rules that every formula is equivalent to one
built without any instances of substitution, which is why it was omitted
from the original definition.
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Propositional rules

ϕ⇒x ϕ
ref

ϕ⇒x ψ ψ ⇒x θ

ϕ⇒x θ
trans

ϕ⇒x >x
true

ϕ⇒x ψ ϕ⇒x θ

ϕ⇒x ψ ∧ θ
and

ψ ∧ θ ⇒x ψ
andL

ψ ∧ θ ⇒x θ
andR

ψ ⇒x ϕ θ ⇒x ϕ

ψ ∨ θ ⇒x ϕ
or

ψ ⇒x ψ ∨ θ
orL

θ ⇒x ψ ∨ θ
orR

ϕ ∧ (ψ ∨ θ)⇒x (ϕ ∧ ψ) ∨ (ϕ ∧ θ) dist ⊥x ⇒x ϕ
false

>x ⇒x ϕ ∨ ¬ϕ
not1

ϕ ∧ ¬ϕ⇒x ⊥x
not2
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Substitution rules

For all arrows f : x→ y and g : y → z in C,

ϕ⇔x [ϕ]idx
id

[ϕ]gf ⇔z [[ϕ]f ]g
comp

ϕ⇒x ψ

[ϕ]f ⇒y [ψ]f
mon

>y ⇒y [>x]f
hom>

[⊥x]f ⇒y ⊥y
hom⊥

[ψ]f ∧ [θ]f ⇒y [ψ ∧ θ]f
hom∧

[ψ ∨ θ]f ⇒y [ψ]f ∨ [θ]f
hom∨
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Quantifier rules

For every arrow f : x→ y in C,

ϕ⇒y ψ

∃fϕ⇒x ∃fψ
mon∃

ϕ⇒y [∃fϕ]f
unit ∃f [θ]f ⇒x θ

counit

For every pushout square,

x
f //

g

��

y

g′

��
z

f ′
// w

[∃fϕ]g ⇒z ∃f ′ [ϕ]g′
bc
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Proofs

A proof of is a tree of deductions, such that each step has the form of one
of our proof rules. The leaves of the tree are the hypothesis of the proof,
and the root is the conclusion.

Here is a simple proof of the sequent ϕ⇒x ϕ ∧ θ from the set of sequents
{ϕ⇒x ψ,ψ ⇒x θ}:

ϕ⇒x ϕ
ref

ϕ⇒x ψ ψ ⇒x θ

ϕ⇒x θ
trans

ϕ⇒x ϕ ∧ θ
and

If there is a proof of σ with hypotheses from the set of sequents T , we
write T ` σ.

Alex Kruckman (IU Bloomington) Logic and cologic over a category Wesleyan, October 19, 2017 27 / 39



Why these proof rules?

Definition

Let B be a category with finite limits. A first-order (Boolean)
hyperdoctrine over B is a functor P : Bop → Bool, such that for every
arrow f : y → x in B, the Boolean homomorphism Pf : Px→ Py has a
left adjoint, i.e. a monotone map ∃f : Py → Px such that

ϕ ≤Py Pf(ψ) ⇐⇒ ∃fϕ ≤Px ψ,

satisfying the Beck-Chevalley condition: For every pullback square in B,

w
f ′ //

g′

��

z

g

��
y

f
// x

and every ϕ ∈ Py, we have Pg(∃f (ϕ)) = ∃f ′(Pg′(ϕ)).
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Why these proof rules?

Formulas ϕ and ψ in context x are provably equivalent if ` ϕ⇔x ψ.

Our proof rules ensure that for every context x, the set of formulas in
context x modulo provable equivalence form a Boolean algebra, and this
family of Boolean algebras coheres to a first-order hyperdoctrine over Cop.

In fact, since the formulas are generated by the formula-building operations
from the atomics >x and ⊥x (the constants of the Boolean algebras in
each context), the logic FOC is the initial hyperdoctrine over Cop!
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Soundness and completeness

A domain M satisfies ϕ⇒x ψ (written M |= ϕ⇒x ψ) if and only if, for
every interpretation a : x→M , if M |= ϕ(a), then M |= ψ(a).

Let T be a set of sequents. We say a domain M is a model of T (written
M |= T ) if M |= σ for all σ ∈ T .

For any sequent σ, we say that σ is a semantic consequence of T (written
T |= σ) if M |= σ for all M |= T .

Theorem (Soundness and Completeness)

Let T be a set of sequents and σ a sequent.

If T ` σ, then T |= σ (Soundness).

If T |= σ, then T ` σ (Completeness).

Soundness is easy: just check that the proof rules are valid.
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Completeness: Proof sketch

To prove completeness, suppose that T 6` σ. We want to prove that
T 6|= σ, i.e. we want to build a model M |= T such that M 6|= σ.

Build M as a directed colimit from C. For each object y in the diagram,
we will choose an ultrafilter Fy in the Boolean algebra of formulas in
context y which respects the sequents in T . These will be the formulas
which are true in interpretation y.

If σ is ϕ⇒x ψ, start the construction with the object x, and ensure that
the ultrafilter Fx contains ϕ but not ψ.

Whenever a formula ∃fθ is in Fy for some arrow f : y → z, add this arrow
to the diagram, and ensure that θ is in Fz, along with [ρ]f for all ρ ∈ Fy.
Close up to a directed diagram by pushouts.

Let M be the directed colimit of the resulting diagram and ay : y →M
the inclusion map. Verify that M |= ϕ(ay) if and only if ϕ ∈ Fy.
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Consequences

Corollary (Compactness)

Let T be a set of sequents. Then T has a model if and only if every finite
subset of T has a model.

Proof: If T has a model, then every finite subset of T has a model.
Conversely, if T has no model, then T is inconsistent: T |= > ⇒0 ⊥. But
then T ` > ⇒0 ⊥, and proofs are finite, so already a finite subset of T is
inconsistent, and this finite subset has no model.

Corollary (The categorical interpretation)

The initial hyperdoctrine over Cop has a natural semantics in ind-C, for
which it is sound and complete.
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Adding relational structure

In FOC , there are no interesting atomic formulas: all the complexity comes
from the category of contexts. Quantifiers are complicated.

On the other hand, in ordinary first-order logic, the category of contexts is
very simple (essentially FinSet), and so are the quantifiers. The complexity
comes from the added structure: relation and function symbols.

If we augment FOC by adding atomic formulas, we can sometimes work
with a simpler category of contexts (e.g. in the case of classical first-order
logic: the category of finite sets instead of the category of finitely
presentable L-structures).
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Relational languages and structures

Fix categories C and D as before.

A relational language L over C is a set of relation symbols. Each relation
symbol R ∈ L has an arity ar(R) ∈ C.

An L-structure is a domain M in D, together with, for every R ∈ L, a
subset RM ⊆ HomD(ar(R),M).

Syntax: We add new atomic formulas. If R is a relation symbol and
f : ar(R)→ x is an arrow in C, then [R]f is a formula in context x.

Semantics: Given an L-structure M and an interpretation a : x→M ,

M |= [R]f (a) iff af ∈ RM .

x
a //M

ar(R)

f

OO

af

<<
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Free hyperdoctrines

We get soundness and completeness without adding any new proof rules.
The augmented logic is called FOC(L).

The formulas of FOC(L) are generated by the relation symbols in L,
subject only to the relations imposed by the definition of a hyperdoctrine.
So we can describe the logic FOC(L) as the free hyperdoctrine over Cop
generated by L.

Corollary (The categorical interpretation)

The free hyperdoctrine over Cop generated by L has a natural semantics in
the category of L-structures in ind-C, for which it is sound and complete.

Theorem

Let L be a relational language over C. The category StrL of L-structures
is itself a locally finitely presentable category, and FOfpStrL has essentially
the same expressive power as FOC(L).
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Example: Stone spaces

A Stone space is a totally disconnected compact Hausdorff space. The
category of Stone space is LFP: D = Stoneop ∼= ProFinSetop, and the
finitely presentable objects are C = FinSetop (view a finite set as a discrete
Stone space).

If S is a Stone space and x is a finite set, an interpretation of x in S is a
continuous map S → x; equivalently, a partition of S into |x| clopen
pieces.

An x-ary relation picks out a subset of the continuous maps S → x. For
example, if S comes equipped with a measure, there is a 2-ary relation
which holds of f : S → 2 if and only if the two clopen pieces f−1({0}) and
f−1({1}) have equal measure.
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Costructures

Let L be a relational language over FinSetop. A costructure is an
L-structure, i.e. a Stone space equipped with interpretations of the
“corelations” in L.

The natural notion of morphism of costructures is coembedding: a
surjective map which preserves the interpretations of the corelations.

A costructure M is cohomogeneous if for any finite costructure A and any
two coembeddings f : M → A and f ′ : M → A, there is an automorphism
σ : M ∼= M such that f = f ′σ.

M
σ //

f   

M

f ′~~
A
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Cohomogeneous costructures

The notion of costructure has appeared in the work of Solecki on dual
Ramsey theory and projective Fräıssé theory, and it comes to the fore in
the recent work of Panagiotopoulos.

Theorem (Panagiotopoulos, ’16)

1 Let S be any second-countable Stone space. Then a subgroup G of
Homeo(S) is closed in the compact-open topology if and only if there
is a language L and a cohomogeneous L-costructure M with domain
S such that G = Aut(M).

2 Let Y be any second-countable compact Hausdorff space. Then there
is a cohomogeneous costructure M which admits a canonical
equivalence relation ∼, and M/∼ is homeomorphic to Y .

Theorem

A costructure is cohomogeneous if and only if its FOFinSetop(L)-theory is
ℵ0-categorical (once this is properly defined) and eliminates quantifiers.
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Future Work

1 Generalize to categories which are not locally finitely presentable. In
particular, it would be interesting to generalize from Stone spaces to
arbitrary compact Hausdorff spaces, and from profinite groups to
compact groups.

2 I described how to augment FOC with relational structure. It is also
possible to add algebraic structure (i.e. function symbols). This
provides a language for the categorical theory of algebras for a functor
(and coalgebras for a functor, in the cologic setting). With Larry
Moss, we are exploring applications to coalgebras in modal logic.

3 In concrete profinite structures, both the tuples (maps x→M) and
cotuples (maps M → x) are interesting. It would be interesting to
develop a logic which talks about both at once.
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