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1 Introduction

I wrote this document while preparing for my qualifying exam in model theory. The goal was
to clarify for myself some of the many equivalent definitions that appear in stability theory,
including where countable language assumptions are necessary, and to collect the arguments
that go into Shelah’s stability spectrum for countable theories in a compact, readable, and
hopefully memorable form.

In Section 2, I have attempted to review all of the definitions and facts about these
definitions which are used in the remainder and which are specific to stability theory. This
was, again, partially done to test myself on this material before the qualifying exam.

Section 3 contains four theorems, characterizing stable formulas (1), stable theories (2),
superstable theories (3), and totally transcendental theories (4). In Theorems 2, 3, and 4,
the last equivalent statement in each serves to drive a hard line between the unstable and
the stable theories (2.(3)), the strictly stable and the superstable theories (3.(5)), and the
strictly superstable and the totally transcendental theories (4.(3)). Together, these theorems
give a nice classification of all countable theories into one of these four types, and this result
(the stability spectrum for countable theories) is summed up in the Corollary at the end of
the document.

But the implications 3.(5) = (2) and 4.(3) = (1) only hold in countable theories (as
noted in the statements of the theorems). In uncountable theories, the stability spectrum is
significantly more complicated (although a version of 3.(5) = (2) still holds, using a cardinal
other than w). Since the equivalence of (4) in Theorem 3 and (2) in Theorem 4 go through
these implications, this leaves open the question of whether 3.(4) is equivalent to superstable
and whether 4.(2) is equivalent to superstable.

Probably these answers are available in Shelah and elsewhere, but I haven’t thought
hard about them or gone looking. If you know or find these answers, or if you see any
way to improve the arguments given here, or if you find mistakes, please let me know:
kruckman@gmail.com.

2 Review of Terminology

Fix a complete theory 7. We work in a universe-sized, saturated, strongly homogeneous
model of 7', M. All elements come from M, all sets are subsets of M, all models are elementary



substructures of M, and all ordinals and cardinals are smaller than the cardinality of M. I
will realize types and move sets by automorphisms in M without explicitly mentioning the
saturation or strong homogeneity. The notation = ¢ means M | ¢. When discussing
forking, it is convenient to talk about algebraic closure in M®?, denoted acl®.

Definition. Let 2 and y be tuples of variables, and let ¢(z,y) be a formula.

e A ¢-formula over A is a boolean combination of formulas of the form ¢(z,a) and
—¢(x,a) with a from A.

o A ¢-type over A is a maximal consistent set of ¢-formulas over A.

o S?(A) is the set of all ¢-types over A.

e S.(A) is the set of all types over A with variables from x.

e ¢ is stable in k if for all A with |A] < &, [S?(A)| < k.

o T is stable in k if for all A with |A| < k and all tuples z, |S;(A)| < k.

e St-Spec(T'), the stability spectrum of T is the class of all infinite cardinals x such that
T is stable in k.

Definition. ¢(z,y) has the order property if for all n € w there are sequences ay, . .., a, and
bi,...b, such that = ¢(a;, b;) if and only if ¢ < j.

Note that replacing < with <, >, or > in the above definition is equivalent.

Definition. A ¢(x,y)-type p over A is definable over B if there is a formula v (y) over B
such that for all a € A, ¢(z,a) € p if and only if = ¥(a).

A complete type p over A is definable over B if every ¢-type obtained by restricting p to
¢-formulas is definable over B.

Definition. (7" stable in some k) Let A C B, p € S;(A), ¢ € S,(B), p C q. We say that ¢
is a non-forking extension of p, written ¢ J p, if some extension of ¢ to acl®)(B) is definable
over acl®(A) (in particular this provides a definition of ¢ over acl®(A)). Otherwise ¢ forks
over A. We write ¢ | 4 B for tp(c/AU B) J tp(c/A) and say c is free from B over A.

We will use the following properties of forking:

e Extension: If p is a type over A and A C B, then p has an non-forking extension to a
type over B. Equivalently, given a tuple ¢ and a set B, there is a tuple d with d =4 ¢
and d | 4, B.

e Finite character: If a { , B, then there is a finite tuple b from B such that a f 4 b.

e Monotonicity /Transitivity: If p C ¢ C r, then p C r if and only if p C ¢ and ¢ C r.
Equivalently, if AC BCC,d | ,Cifandonlyifd | , Bandd | 5 C

e Symmetry: Ifc | 4 b, thenb | , c.



The ranks in the following definitions take values in the ordinals together with —1 and
00, where —1 is less than every ordinal and oo is greater than every ordinal. One can give
more general definitions of all three (allowing for evaluation on partial types), but we won’t
need those here.

Definition. Given a formula ¢(z,y), the rank R? of a formula () is defined as follows:
R?(¢) > 0 if ¢ is consistent.
R?() > X a limit ordinal if R?(¢)) > « for all a < .
R?(1)) > a+1if there is a tuple b such that R®()A¢(x, b)) > o and R®(Y A= (z,b)) > a.

For an ordinal p, R>®(1)) > n is equivalent to the ability to build a ¢-tree of height u
whose leaves satisfy 1, as in the following definition:

Definition. Let p be an ordinal and ¢(z,y) and ¢ (x) formulas. A ¢-tree of height 1 whose
leaves satisfy 1) is the following configuration: a tuple b, for every n € 2<# (view elements of
2<H as binary sequences of length less than n), together with a tuple a, for every o € 2", such
that for every o, = ¢(a,), and for every initial segment 7 of o, = ¢(a,, b,) if the next bit of
o after the end of nis a 1 (i.e. a, is a right descendant of b, on the tree), or |= =¢(a,, b,) if
the next bit of o after the end of 7 is a 0 (a, is a left descendant of b,)).

For p finite, the existence of such a (finite) configuration is expressible by a single formula,
whose parameters are only the parameters appearing in .

Note also that if there are ¢-trees of arbitrarily large finite height, then by compactness
there are ¢-trees of arbitrary ordinal height. As a consequence (although we will not explicitly
use this), R?(¢)) > w implies R?(v)) = oo.

Definition. The Morley rank RM of a formula ¢(x) is defined as follows:

RM(¢) > 0 if ¢ is consistent.

RM(¢) > A a limit ordinal if RM(¢) > « for all v < A.

RM(¢) > a + 1 if there are formulas (¢;());e, such that ¢); — —; for all ¢ # j and
RM(¢ A1) > a for all i.

The set S,(A) for any set A carries the structure of a compact, totally disconnected,
Hausdorff space, with topology generated by the basic (clopen) sets Uy, = {p € S,(A) | ¢ € p}.

In if M | T is w-saturated, the Morley rank RM(¢) agrees with the Cantor-Bendixson
rank of the subspace Uy of S, (M).

For R?-rank and Morley rank, it is easy to check by induction on « that if § — 1, then
R?(0) < R?(¢) and RM(0) < RM(v)).

Definition. The Lascar rank U of a complete type p is defined as follows:
U(p) > 0 always
U(p) > A alimit ordinal if U(p) > « for all a < A.
U(p) > a + 1 if there is a forking extension ¢ D p with U(q) > a.

If p is a type over A and c realizes p, we can equivalently phrase the successor condition
as: there is B D A such that ¢ / 4 B and U(tp(c/B)) > a (move a realization of ¢ to ¢ by
an automorphism fixing A).

If U(p) < oo and p C ¢, then U(p) = U(q) if p C q and U(p) > U(q) otherwise.
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3 Content

Theorem 1 (¢ is stable). The following are equivalent for a formula ¢(x,y):

1) ¢ does not have the order property.

2 is stable in  for all &.

4) R?(x =) <w (if z is a tuple of variables, z =z isxy =11 A -+ Az, = 1,).

(1)
(2) ¢
(3) ¢ is stable in # for some .
(4)
(5)

All ¢-types over a set A are definable over A.
Proof.

(1) = (2): This is the hardest implication. I'll prove the contrapositive - assume ¢ is
unstable in some x. Let A be a set with |A| = k < |S?(A)|. Take C = {c¢;|i € T}, a set of
tuples with distinct ¢-types over A.

Let ¢ be the same formula ¢(z,y), but with the x variables viewed as the parameters, so
a gg—type has free variables y.

Let p be a ¢-type over A and B a set. We say p splits over B if there are a and o’ from
A such that tp?(a/B) = tp?(d’/B), but ¢(x,a) € p and ~¢(x,a’) € p.

Build a sequence of sets (A;);c., each of size k, as follows: Let Ay = A. Given A, let
A,i1 be A, together with realizations of all ¢-types and g—types over finite subsets B Cg, A,,.
Since there are at most x many such finite subsets and there are finitely many ¢-types and
¢-types over any finite set, we can construct A, of size k.

Claim: There is a ¢ € C such that for all n € w and for all finite subsets B Cg, A,,
tp?(c/A,11) splits over B.

Suppose not. Then for all ¢ € C, there is n € w and B Cg, A, such that tp?(c/A,41)
does not split over B.

Now we will refine our set C' to make it more homogeneous. The association of an n to
each ¢ € C gives a map C' — w, so we can pick an n whose preimage in C' has size kT, and
replace C' with this subset. Similarly, the association of a B Cg, A, to each ¢ € C gives a
map C' — Pgn(A,). Since |Pan(A,)| = K, we can pick a B Cg, A,, whose preimage in C' has
size £, and replace C' with this subset.

There are only finitely many ¢-types over B, all of which are realized in A, 1, so we
can pick B Cgn A,y containing realizations of all these types. Now there are only finitely
many ¢-types over B, so we can pick distinct ¢;, ¢, € C such that tp®(c;/B) = tp®(co/B).
We also know that tp¢ (c1/A) # tp?(ce/A), since they are distinct elements of C, and that
tp?(c1/An11) and tp®(ca/Any1) do not split over B. Now we can forget about C' and work
with ¢; and cs.



Since tp?(c;/A) # tp?(ca/A), there is a from A with = ¢(cy,a) but | —=é(ce,a) (switch
the numbering of ¢; and ¢, if necessary). Let b from B realize tp‘z(a/ B). Now we have a
from A C Apyq and b from B C A,1, with tp®(a/B) = tp®(b/B). Since tp®(c1/Apy1) does
not split over B, and = ¢(cy,a), we must have |= ¢(c;, b). Similarly, since tp®(ca/Any1) does
not split over B, and |= =¢(c2, a), we must have = =¢(c2,b). But b is from B, contradicting
tp¥(c1/B) = tp?(ca/ B).

Now we’ll use the tuple ¢ provided by the claim to construct witnesses to the order
property. By induction, define tuples u,,, v,, w, from As,,o for n € w, where u,, and v, can
be substituted for y and w, can be substituted for x in ¢(x,y).

Suppose we have defined wy, vg, wy, for & < n. Let B, = J,_,{wr} Con A2,. Since

tp(c/Asns1) splits over B, we can find u,, and v,, from Ay, 1 with tp?(u,/B,) = tp®(v./Bn),
but = ¢(c, u,) and | —¢(c,v,). Now let B, = Ug<p{tn, vn} Chn Aons1. Since all ¢-types
over finite subsets of As,.; are realized in Ay, s, we can find w, from Ay, s realizing
tp(c/B).

Now if ¢ > j, we have = ¢(w;, u;) and = —¢(w;, v;), since = ¢(c,u;) and = —¢(c, v;),
and u; and v; are in B]. On the other hand, if i < j, I claim that either = —¢(w;, u;) or
= é(w;,v;). Indeed, if = @(w;,u;), then since tp?(u;/B;) = tp®(v;/B;), and w; is in Bj,
= o(wi, v)).

So we can define a function [w]*> — 2, taking a pair i < j to 0 if | —¢(w;, u;) and 1
otherwise. By Ramsey’s Theorem, we can pick an infinite homogeneous subset of w, which
induces an infinite subsequence of (u,, v, w,);c,. Replacing the original sequence with the
subsequence, we either have that for all i < j, = —¢(w;, u;), in which case (wy, Un)icw
witnesses the order property (with ¢ corresponding to >), or for all i < j, = ¢(w;,v;), in
which case (wp, v,,)ic, Witnesses the order property (with ¢ corresponding to <).

(2) = (3): There’s no work to be done here.

(3) = (4): We'll prove the contrapositive. Suppose R?(x = x) > w. Then we can build
¢-trees of any finite height, so by compactness, we can build ¢-trees of any ordinal height.

Let x be any cardinal. Let p be the least cardinal such that 2* > k. Such a p exists,
and in fact p < &, since 2® > k. Now build a ¢-tree of height p, consisting of {b,|n € 2<#}
and {a, |0 € 2"}. Let A= {b,|n € 2°#}. Then [A| = 2| <> _ [2%| < k- K = K, since
1 <k and [2%] < k for all @ < p. But for 0 # 7, a, and a, have distinct ¢-types, witnessed
by the b, at the first position in which the sequences o and 7 differ. So |S?(A)| > 2# > &,
and ¢ is unstable in k.

(4) = (1): Again, we’ll prove the contrapositive. Suppose ¢ has the order property.
Then for any n, we can choose sequences ai,...,as and by, ..., by ordered by ¢, and we
can arrange these tuples into a ¢-tree of height n witnessing R?(z = z) > n. So we see that
Ré(z=1) > w.

(4) = (5): Let p be a ¢-type over A. For any v € p, since ¢ — x = x, we have R®(1)) <
R?(x = x) = w. Let 9(z) be a formula of minimal R?-rank in p, say R®(¢(x)) = k < w.



Now for any tuple b from A, if ¢(z,b) € p, then ¥ (z) A ¢(x,b) € p, so R®((z) A d(x, b)) > k
by minimality.

On the other hand, if ¢(z,b) ¢ p, then —¢(z,b) € p, so R®(Y(x) A —¢(z,b)) > k by
the argument above. Suppose also that R®(y(z) A ¢(z,b)) > k. Then ¢(x,b) and —p(x,b)
witness that R?((z)) > k+ 1, which is a contradiction, since we already know that its rank
is k. We conclude that if ¢(z,b) ¢ p, then R?(y(z) A ¢(z,b)) < k.

Now the property R?(¢(x) A ¢(z,b)) > k is equivalent to the ability to build a ¢-tree of
heigh k£ whose leaves satisfy ¢ (x) A ¢(x,b). This is a definable property of b with parameters
those elements of A appearing in ¥. So p is definable over A.

(5) = (3): Let k = |T|, and let A be a set with |A| < k. Each type in S?(A) is uniquely
determined by its definition over A. But there are at most |A|-|T| = k inequivalent formulas
over A, so |S¢(A)] < k, and ¢ is stable in . O

Theorem 2 (7 is stable). The following are equivalent:
(1) Every formula ¢(z,y) is stable.

(2) T is stable in all  such that &7l = .

(3) T is stable in some .

Proof.

(1) = (2): Let s be such that x7l = k, and let A be a set of cardinality at most .
There is an injective map S;(A) < [y, S?(A), associating to each map its collection of

restrictions to ¢-types for each formula ¢(z,y). Now [Sz(A)] < [Ty S¢(A)| < kT =k,
since |S?(A)| < & for each ¢ (¢ is stable, hence stable in k). So T is stable in x.

(2) = (3): The only thing to note here is that some cardinal x has k"l = k. But if X is
any cardinal, then taking £ = A7l we have /Tl = (ATHITI = \ITHTT = \ITI = 4,

(3) = (1): Suppose T is stable in k. Let ¢(z,y) be a formula, and let A be a set of
cardinality at most x. There is a surjective map S,(A4) — S¢(A) given by restricting a type
to its ¢-formulas (surjective because any ¢-type may be extended to a complete type by
taking the complete type of a realization). So |S?(A)| < |S.(A4)| < k, and ¢ is stable in &,
hence stable. N

Theorem 3 (7 is superstable). The following are equivalent (for stable theories):
(1) For any tuple c and set A, there exists B Cg, A with ¢ | 5 A.

(2) There is no infinite forking chain of finite subsets. That is, there is no tuple ¢ and chain
Ay C A; C ... of finite subsets such that ¢ j/Ai A;yq for all i.
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(3) For all complete types p, U(p) < oo.

(4) T is stable in all x > 271,

(5) T is stable in some  such that /71 > k.

Note: (5) = (2) requires countable language! I would like to know if (4) = (2).
Proof.

M

2)<==(5)

/

(1) = (2): Suppose for contradiction that we have a tuple ¢ and chain Ay C A; C ...
as in the statement. Let A = Ul.ew A;. By hypothesis, there is a finite subset B Cg, A such
that ¢ | 5 A. Now B C A, for some n. By monotonicity in the base, ¢ J/An A, and by
monotonicity on the right, ¢ | A, Any1, contradiction.

(2) = (3): I first claim (assuming only stability) is that there is an ordinal a such that
for any finite set B and any type p over B, if U(p) > «, then U(p) = co. Indeed, note that
U-rank is preserved under automorphisms, so U(tp(c/B)) depends only on tp(cB/0), the
type of a finite tuple over the empty set. Since the collection of all types in tuples of finite
length over the empty set forms a set, the collection of ordinals appearing as U(tp(c/B)) for
B finite is a set. Take « to be their supremum.

Next, I claim (again assuming only stability) that if B is finite and U(tp(¢/B) = oo,
then there is a finite B’ D B with ¢ [ 5 B’ and U(tp(¢/B’)) = oo. Indeed, taking « as in
the first claim, U(tp(c/B)) > a + 1. This is witnessed by a set B D B with ¢ [ 5 B and
U(tp(¢c/B)) > . Now by finite character, there is a finite tuple ¥ from B with ¢ [ , BY.
And restricting tp(c/B) to B' = Bb can only make the U-rank go up, so U(tp(c/B')) > a,
and hence U(tp(c/B’)) = oo since B’ is finite.

Now we’ll prove the contrapositive of (2) = (3). Suppose that there is some type p over
A with U(p) = co. Take c realizing p. Let Ay = (). Restricting a type to a smaller set can
only make the U-rank go up, so U(tp(c/Ap)) > U(tp(c/A)) = oo. Applying the second claim
repeatedly, we obtain a forking chain of finite sets Ay C A; C ... with U(tp(c/A4;)) = oo
and ¢ [, Ay for all i.

(3) = (1): Let B be the finite subset of A minimizing U(tp(¢/B)) < oo. Suppose
¢ L g A. Then ¢ / 5 a for some finite tuple a from A. But then U(tp(c/Ba)) < U(tp(c/B)),
contradicting minimality. So ¢ | g A.

(1) = (4): Take x > 271 and A a set of size at most x. Given any type p € S,(A) with a
realization ¢, we have B Cg, (A) with ¢ | 5 A. Then p is determined by its definition over
acl®(B), given by one defining formula over acl®!(B) for each formula in the language.

Now we count. There are at most x many finite subsets of A. For each such subset B,
acl®!(B) has size at most |T'|, since each formula with parameters from B may add at most



finitely many members to acl®)(B), so there are at most |T'| formulas with parameters from
acl(B). A definition is a choice of one defining formula for each formula, so there are at
most |T'|T1 = 271 definitions over acl®®(B). Then there are at most x - 2171 = x many types,
and 7' is stable in k.

(4) = (5): The only thing to note here is that there is a cardinal x > 2/7 such that
kTl > k. Take any cardinal x of cofinality w (there are arbitrarily large such cardinals).
Then /Tl > g<f8) > g

(5) = (2): (Countable language assumed!) We will prove the contrapositive. Suppose
there is a tuple ¢ and chain of finite sets Ay C A, C ... with ¢ £ 4. Ay for all i. We will
show that for all k with k¥ > k, T is unstable in x.

We will produce a s-branching w-height tree of finite sets (A, ),c.<w (view elements of
K<“ as finite sequences from k) by induction. One of the things we will ensure is that if n
has length n (I(n) =n), A, = A,. Take Ay = Ay.

Given A, = Ay for all  with 5 of length < n, and taking a particular 7 of length n, we
will define A,, for o € s by induction. The idea is to pick A,, so that tp(4,./A,) matches
tp(A,+1/Ay) and so that A,, is free over A, from everything picked so far.

Formally, since A, = A,, we can push forward tp(A,1/A,) under an automorphism
taking A, to A,, obtaining a type over A,, take a nonforking extension of this type to
A= (Unary<n An) U (U, 5.5<a As), and pick A, realizing this type, so Ayq \I/An A

Given this construction, let A* = J, <. Ay Since all n are finite, [A*] <[] = k.
But we will associate distinct type p, over A* to each path through the tree o € k“. Since
Kk > k, this will show that T is unstable in .

Let A=J, A, (the union of the original forking chain), and let p = tp(c/A). Note that
p | A, forks over A, for all n.

Let 0 € k*. For all n € w, let A7 = A,},,. Then we have a chain Af C A7 C .... Let

=, A7. Since A7 = A, for all n, A = A. Let p, be the pushforward of p to a type
over A% by an automorphism moving A to A, and let p, be a nonforking extension of p, to
a type over A*. Note that p, [ A7 | = p, | A7, forks over A7 for all n.

It remains to show that for ¢ # 7, p, # p,. Let n + 1 be the first place where the
sequences o and 7 differ. So o [ n =17 [ n, call it . Then A7 = A7 = A,. Since p, | A},
forks over A,, it suffices to show that p, [ A7, does not fork over A,.

Claim: For all N > n, A7, J/A

The proof is by induction on N. In the base case, we need that A7, | a, Aniq. Let
oln+1=naandlet 7 [ n+1=ns. Without loss of generality (by symmetry of forking),
a < 3, and we chose A,z free from A g over A, for all a < f.

Now assume we have A7, | A, A% with N > n+1. We chose AF ., free from all A,y with
I(n') < N over A, and in partlcular A% J/Ao ne1- By symmetry, AT \LA?V At
and by transitivity, applying the induction hypothesw AT L Ay A4, as desired.

As a consequence of the claim, A7, | a, A7, Indeed, if A7, L a, A7, then there
is a finite tuple b from A7 with A7, [ A, b and b is contained in A" for some N, so
Ar L A, A%, contradicting the claim.



Now let ¢, realize p,. Since p, is a nonforking extension of p, = p, | A%, ¢y | 4o A*.
By monotonicity, ¢, | 4o A%, s0 A7, | 40 ¢, by symmetry. But also A7, | a, A7 By
transitivity, A7, L A, Co, and by symmetry again, ¢, L A, A7, that is to say, p, | A},
does not fork over A,, as desired. n

Theorem 4 (7 is totally transcendental). The following are equivalent:

(1) RM(z =x) < o0

(2) T is stable in all k > |T|

(3) T is stable in some x < 27!

Note: (3) = (1) requires countable language! I would like to know if (2) = (1).
Proof.

(1) = (2): We'll prove the contrapositive. Suppose 7" is unstable in some x > |T'|. Let
A be a set of size at most x with |S,(A4)| > k. Given a formula ¢(x) with parameters from
A, write Uy for the set of all types is S;(A) containing ¢.

Claim: Given any formula ¢(x) with |Uy| > &, there is a formula ¢(x) such that |Ugny| >
k and |Ugr—yp| > K.

Suppose not. Then there is a formula ¢ with |Uy| > & such that for all ¢(z), |[Ugry| < &
or |[Ugr-p| < k. Note that it cannot be both, since Uy = Ugpy U Ugpr—y- Let ¥ be the set of
all formulas ¢(x) such that |U,| < k (so U contains exactly one of ¢ and —) for each ).
Now we can write Uy = (Uy Usry) U (g Usn—y), since a type contains some formula in W
or the negations of all formulas in ¥. But (g Usn—y contains at most one type, since a type
in the intersection is determined entirely as {—) |y € U},

So |Us|l = | (Ug Usaw) U (Ng Upr—p) | < |T| - & + 1 = K, contradiction.

Now we will use the claim to build a tree which will contradict RM(z = z) < co. For all
n € 2<% (view elements of 2<“ as finite binary sequences), define a formula ¢, by induction
such that |Ug, | > & for all 7. Let ¢y be x = 2. By hypothesis, |U,—,| = [S;(A)| > &.

Given ¢, with Uy, | > &, apply the claim to obtain ¢ with |Uy, rp| > & and |Uy, r—y| > k.
Let ¢y0 = ¢ A and ¢ = ¢, A 7).

I will argue by induction that every formula in the tree has Morley rank at least « for
all ordinals a.

Base case: Each formula ¢, has [Uy, | > &, so ¢, is consistent, and RM(¢,) > 0.

Limit case: By induction, RM(¢,) > « for all o < X a limit, so RM(¢,) > .

Successor case: We have RM(¢,) > « for all . Now the formulas ¢,1, ¢no1, Pyoo1, - - - all
imply ¢, are pairwise contradictory, and have RM(¢, A ¢po.01) = RM(¢y0.01) > a by
induction. So they witness RM(¢,) > a + 1.



Now since z = x is the root of the tree, RM(z = z) = oo, as desired.
(2) = (3): The only thing to note here is that 7T is stable in |T'| < 2/71.

(3) = (1): (Countable language assumed!) Again, we'll prove the contrapositive. Sup-
pose RM(xz = z) = oco. We'll show that T is unstable in every x < 2¥. To do this, it suffices
to find a countable set of parameters A such that S,(A) = 2“.

Since Morley rank corresponds to Cantor-Bendixson rank on the type space S = S, (M)
for a sufficiently saturated model M, RM(x = x) = co means that S, the final derived set
of S (which has no isolated points), is not empty. For all n € 2<¢, define a formula ¢, by
induction such that U,, NS> # 0.

Let ¢y be x = z. Given ¢, with U, NS> # 0, pick two types in this intersection, p
and ¢. There cannot be just one, or it would be isolated in S by ¢,. Let ¢, be a formula
separating them and let ¢,; be its negation, so ¢,0 € p and ¢,; € ¢q. Then since p € Uy, ,NS™
and q € Uy, , NS>, these intersections are not empty.

Let A be the set of all parameters appearing in the formulas ¢,. A is countable, since
there are countably many such formulas. But |S,(A)| > 2¥, since each path through the tree
n € 2% gives rise to a distinct consistent type by compactness. ]

Corollary (Stability spectrum for countable theories). If T is countable, there are just four
possibilities for the stability spectrum of T
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