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What makes some problems easier to solve than others? What makes some areas of
mathematics easier to understand than others? Much of mathematical logic is concerned
with variants of these broad questions. Computer scientists classify decidable problems by
their computational complexity, reverse mathematicians measure non-constructive theorems
by the strength of the comprehension and choice principles needed to prove them, and set
theorists stratify axioms which go beyond ZFC set theory by their consistency strength.

Model theorists, on the other hand, look for dividing lines in the complexity of theories
of mathematical structures in first-order logic, in an attempt to separate “tame” theories
(e.g. the theory of vector spaces or algebraically closed fields) from “complex” ones (e.g.
Peano arithmetic or ZFC set theory), and to develop general techniques for studying the
tame theories and their models (a model for a theory T is just a mathematical structure
satisfying the axioms of T ). These tools allow us to understand definability (sets, relations,
and functions definable by first-order formulas) in tame structures (e.g. the ordered group of
integers, the real field, or the complex field), which can be applied to purely mathematical
questions about these structures.

Modern model theory is heavily influenced by Saharon Shelah’s landmark work on classifi-
cation theory [23]. Shelah developed a deep structure theory for the class of stable first-order
theories and the models of these theories. Though very abstract, Shelah’s work (and later
developments in stability theory, by Ehud Hrushovski, Anand Pillay, and many others)
is the key component in many of the most striking applications of model theory, such as
Hrushovki’s proof of the Mordell–Lang conjecture for function fields [9].

The neostability program seeks to generalize Shelah’s work to other dividing lines beyond
stability. There are a host of these properties (see [20] for a “map”), and unfortunatley they
are often named by arcane acronyms like NSOP1 or NTP2. But as the theory develops,
evidence accrues that some dividing lines are especially important and robust, demonstrated
by structure theorems for theories on the “tame” side of the line and non-structure theorems
for theories on the “complex” side. This program has been very successful for several classes
of theories, most notably the simple theories (see [27]), the NIP theories (see [24]), and the
o-minimal theories (see [26]).

In my work, I am particularly interested in generic and random structures, especially in
relation to the neostability program described above. By generic, I usually mean existentially
closed ; this is a richness condition on a model M which says that any first-order formula
without quantifiers that has a solution in a larger model already has a solution in M . For
example, a generic field is algebraically closed, and a generic linear order is dense without
endpoints. When the generic models of a theory T can themselves be axiomatized by a
first-order theory T ∗, we call T ∗ the model companion of T .

The generic models of T are often more amenable to model-theoretic analysis than ar-
bitrary models of T , and studying them can shed light on the entire class of models of T ,
especially when the model companion T ∗ exists (this is a generalization of the idea that
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it is useful in field theory to embed a field in its algebraic closure). Abraham Robinson
already pioneered this approach to applied model theory in the 1950s, and it continues to
bear fruit. For example, technical results about the stable theory DCF (the generic theory
of fields equipped with a derivation) and the simple theory ACFA (the generic theory of
fields equipped with a distinguished automorphism) have been central to the applications
of model theory to arithmetic geometry alluded to above (e.g. [9] and [10]).

Another sense of the word generic refers to Fräıssé limits. If K is a class of finite structures
(think of the class of finite graphs) satisfying certain hypotheses, then there is a countably
infinite structure MK, the Fräıssé limit of K, which is universal (every structure in K embeds
into it) and homogeneous (any two such embeddings are conjugate by an automorphism of
MK). If we look at the space XK of all structures M with domain N, such that all finite
substructures of M are in K, then the isomorphism class of the Fräıssé limit MK is comeager
in XK: generic from the point of view of view of Baire category. Fräıssé limits are at the
heart of many connections between model theory and combinatorics, descriptive set theory,
and permutation group theory (see [4] and [13]).

If G is the class of the class of finite graphs, the Fräıssé limit MG is known as the Rado
graph, or the random graph. The Rado graph also arises from the Erdős–Rényi random
graph construction: fix a countably infinite vertex set and a probability 0 < p < 1, and
put an edge between each pair of distinct vertices independently with probability p. The
resulting graph is isomorphic to the Rado graph with probability 1.

This random construction can be formalized as a probability measure µ on the space
XG , which is moreover invariant and ergodic for the natural group action of S∞ on this
space (this group action is sometimes called the “logic action”, and its orbits are exactly
the isomorphism classes). It turns out that this kind of measure on XG , which we call an
ergodic structure, encodes exactly the same information as a graphon, a limit structure for a
sequence of finite graphs which converges in the appropriate sense (see [19]), and its natural
generalization to other spaces XK can be viewed as “generalized graphons” for other classes
of structures K.

The Baire category / measure analogy between Fräıssé limits and ergodic structures
was a major theme of my PhD thesis [15]. In a joint paper [1] with Nate Ackerman,
Cameron Freer, and Rehana Patel that came out of that thesis, we characterized those
ergodic structures which (unlike the Erdős–Rényi measure) do not give measure 1 to any
single isomorphism class. The proof used a detailed model-theoretic “Morley–Scott analysis”
of ergodic structures, providing evidence that these measures can be profitably viewed as
random analogues of ordinary structures.

In the rest of this statement, I will describe four major themes in my current research:

(1) Generic structures and NSOP1.
(2) Random structures, Fräıssé limits, and zero-one laws.
(3) Reductions that preserve genericity.
(4) Other logics (and connections with computer science).

The first three sections share the common thread of generic and random structures in model
theory. The last section can be read independently from the rest of the statement.

Generic structures and NSOP1: One dividing line in the neostability hierarchy,
called NSOP1, has been the subject of increased attention recently. This is largely due to
work of Artem Chernikov, Itay Kaplan, and Nick Ramsey [7, 12], who showed that NSOP1

theories can be characterized by the existence of an abstract notion of independence called
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Kim independence, which is a generalization of forking independence in simple and stable
theories.

One of the most interesting features of NSOP1 is its apparent robustness under “generic
constructions”. For example, in [18], Ramsey and I showed that the generic expansion of
an NSOP1 theory by Skolem functions, or by new constant, function, or relation symbols
interpreted arbitrarily, is NSOP1. A specific example is the generic theory of all L-structures
in an arbitrary language, which was previously known to be simple when L is relational.
Using a result from Peter Winkler’s thesis [28] on the existence of the generic Skolemization,
it follows that any NSOP1 theory which eliminates the quantifier ∃∞ has an expansion to
an NSOP1 theory with built-in Skolem functions.

In joint work with Gabe Conant [6], we showed that the theory of generic projective planes
is NSOP1 (a projective plane is an incidence structures in which any two points are incident
with a unique line and any two lines are incident with a unique point), and we generalized
this to structures we call (m,n)-pseudoplanes (incidence structures in which any m points
are incident with (n − 1) lines and any n lines are incident with (m − 1) points). These
examples are particularly interesting, because viewed as generic bipartite graphs omitting
Km,n, they are bipartite analogues of the generic Kn-free graphs, which are the canonical
examples of SOP3 but NSOP4 theories.

I continued this work with an undergraduate student, Matisse Peppet, in a successful
summer REU project. She investigated the combinatorics of (m,n)-pseudoplanes, identified
a robust notion of non-degeneracy for these structures, and showed that if n ≥ 2 and m ≥ 3,
then every non-degenerate (m,n)-psuedoplane is infinite. In particular, her work implies
that in these cases, the theory of generic (m,n)-pseudoplanes has no prime model. The
world of generic combinatorial structures is full of interesting but very concrete problems,
and look forward to working with undergraduates on similar projects in the future.

In forthcoming joint work with Minh Tran and Erik Walsberg, we have investigated in-
terpolative fusions: Given a family of languages (Li) with common intersection L∩ and a
family (Ti)i∈I of model-complete Li-theories, with a common set T∩ of L∩-consequences,
the interpolative fusion is the model companion of the union

⋃
i∈I Ti (if it exists). Interpola-

tive fusions provide a unified framework for studying a wide variety of examples of generic
theories in model theory, some of which (e.g. algebraically closed fields with multiple inde-
pendent valuations) are explicitly interpolative fusions, while others (e.g. DCF and ACFA)
are bi-interpretable with interpolative fusions.

In this work, along with providing sufficient conditions for the existence of the interpola-
tive fusion and proving quantifier-elimination results, we showed that under appropriate
hypotheses on T∩ (including stability), if all Ti are NSOP1, then the interpolative fusion is
NSOP1. This gives an extremely flexible recipe for producing new NSOP1 theories, which
can be used to motivate and test conjectures in this area.

All of this work suggests a very interesting problem in neostability: is there a class
of theories which is similarly robust under generic constructions, but which also contains
ordered structures? One motivation comes from NTP2, a class of theories containing the
simple theories, but also some theories with the strict order property, such as dense linear
orders and p-adic fields.

Problem 1. Complete the analogy: simplicity is to NTP2 as NSOP1 is to X. Develop a
theory of Kim independence in the context of theories with property X.

The class of theories with the conjectural property X should include the NTP2 theories
and the NSOP1 theories, and thus a solution to this problem would provide the broadest
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class of theories for which a satisfying theory of independence has been developed to date.
To make the problem more concrete, we know of several natural examples of first-order
theories which should satisfy property X, but which are not on the tame side of any other
known model-theoretic dividing lines: e.g. the generic theory of parameterized linear orders,
the generic Skolemization of (Q,≤), and Tran’s theory [25] of an algebraically closed field
F of finite characteristic with cyclically ordered multiplicative group induced by a character
F× → C×. These theories will serve as important test cases.

Random structures, Fräıssé limits, and zero-one laws: Above, I discussed how
the Rado graph can be obtained as the Fräıssé limit of the class G of finite graphs and
also (with probability 1) from the Erdős–Rényi random construction. In fact, it arises in a
third way, from the zero-one law for finite graphs. For every first-order sentence ϕ in the
language of graphs, the limit of the fraction of graphs of size n satisfying ϕ is 0 or 1 as
n→∞. And the Rado graph is the unique countable model of the set of all sentences with
limiting probability 1. In particular, it is pseudofinite: every sentence in its theory has a
finite model.

A major open problem in combinatorial model theory is the question of whether the
generic triangle-free graph (which has SOP3, hence is not simple or NSOP1) is pseudofinite.
In [14], I was able to show pseudofiniteness for several Fräıssé limits with NSOP1 theories.
This led me to raise the following question, which seems very hard.

Question 2. For every pseudofinite Fräıssé limit MK, is Th(MK) NSOP1?

In joint work in progress with Cameron Hill, we are working on more tractable versions of
the open problems above. In [14] (which is a chapter of my PhD thesis [15]), I showed that
if a Fräıssé class K has disjoint n-amalgamation for all n (these are “higher dimensional”
analogues of the amalgamation property), then there is a sequence of measures (µk)k∈N on
the space of structures in K with domain [k], which converge (in the appropriate sense) to
an ergodic structure µ, such that µ gives measure 1 to the isomorphism class of the Fräıssé
limit MK, and the µk have a zero-one law converging to the theory of MK. If K admits
such a sequence of measures, I call the theory Th(MK) strongly pseudofinite. In the case of
the class G of finite graphs, the uniform measures on the spaces of graphs with domain [k]
witness that the theory of the Rado graph is strongly pseudofinite.

Conjecture 3. Let K be a Fräıssé class such that Th(MK) is strongly pseudofinite. Then:

(A) Th(MK) is simple (with SU-rank 1).
(B) MK has a reduct of a Fräıssé limit MK′ , such that the Fräıssé class K′ has disjoint

n-amalgamation for all n.

Either of these conjectures would establish that the generic triangle free graph is not
strongly pseudofinite. At least (A) seems within reach.

Reductions that preserve genericity: As another instance of the problem of measur-
ing complexity in mathematics, descriptive set theorists study certain kinds of reductions
between analytic equivalence relations on Polish spaces. A canonical example of such a re-
lation is the isomorphism relation ∼=T on the space XT of models of a theory T with domain
N. The relation ∼=T is in fact an orbit equivalence relation: the isomorphism classes are
the orbits of the logic action of S∞ on XT . A reduction from ∼=T to ∼=T ′ is then a way
of encoding models of T as models of T ′ in a way which preserves isomorphism. Usually
some condition on the definability of the encoding is enforced; e.g. the reduction function is
required to be Borel or at least Baire measurable.
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In recent work with Aristotelis Panagiotopoulos [17], we study a kind of reduction we
call ∗-reductions: these are Baire measurable reductions which preserve generic properties,
in the sense that the preimage of a comeager set is comeager. We introduce a new kind
of dynamical obstruction to reductions, and present an infinite family of orbit equivalence
relations, none of which is ∗-reducible to any other.

The key observation is that the topology of an orbit equivalence relation encodes more
than just the equivalence relation: it also allows us to define a directed graph, the Becker
graph, whose vertices are the equivalence classes. In the case of a logic action, this graph
is the embeddability relation between structures. Our main theorem is that if f : (X,E)→
(Y, F ) is a ∗-reduction, then there is an invariant comeager subset C of X and an invariant
non-meager subset D of Y such that the Becker graphs on C and D are isomorphic.

Using this theorem, we are able to demonstrate non-reducibility for a family of classes
of structures (Bn)n∈ω, which were originally defined in [2] by John Baldwin, Martin Koer-
wien, and Chris Laskowski. These classes have the property that Bn has disjoint (n − 1)-
amalgamation, but no non-trivial instances of disjoint n-amalgamation. Roughly speaking,
these differences in the “amalgamation dimension” are visible in the Becker graphs and
provide obstructions to ∗-reducibility between the Bn.

Currently, our techniques only apply to the embeddability relation between structures;
that is, we look at Becker graphs, not Becker categories. In future work, we would like to
develop functorial versions of these techniques, possibly in the setting of Polish groupoids.

Other logics (and connections with computer science): My other research has
focused on non-first-order logics, largely motivated by connections with computer science.

First, my two papers with my postdoc mentor Larry Moss ([21] and [16]) are part of
his long-term project on natural logics: logics with features which model natural language.
These logics are typically much weaker than first-order logic; they are decidable, and some-
times even computationally tractable. To understand these logics, one needs to prove precise
enough completeness theorems to determine the computational complexity of the conse-
quence relation |=. We analyzed a particular family of natural logics and identified features
which distinguish tractable logics (|= is in P) from intractable logics (|= is co-NP hard).
These dichotomies have implications for automated reasoning from natural language.

In joint work with Siddharth Bhaskar, another postdoc at IU, we studied the neostability
dividing lines from model theory in the context of least fixed point (inductive) logic over
classes of finite structures [3]. In particular, we showed that in this setting, stability and
NIP coincide. The study of inductive logic is motivated by notions of computation over
finite data structures and is related to issues in finite model theory (specifically McColm’s
conjecture, which was settled by Yuri Gurevich, Neil Immerman, and Shelah [8]).

Finally, in current work, I am developing a categorical extension of first-order logic that
replaces the variable contexts of formulas and the underlying sets of structures with ob-
jects in categories with sufficient structure, e.g. locally finitely presentable categories. By
dualizing, I obtain a “cologic”, which naturally extends semantics, notions, and methods of
model theory to profinite structures and coalgebras. This unifies some earlier examples of
model-theoretic methods for profinite structures in the literature (see [5] and [11]). And it
promises to provide logical tools for working coalgebras, which are frequently used in com-
puter science to model infinite data types (see [22]). I have a paper in preparation laying
out the foundations, but there is much work to be done here developing the model theory.

In the future, I am very interested in collaborating with computer scientists on further
developments in these projects, and on applications of logic to computer science.
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