
Independence in generic structures

Alex Kruckman

Indiana University, Bloomington

Purdue University
Operator Algebras Seminar (Special Logic Edition)

October 3, 2017

Alex Kruckman (IU Bloomington) Independence in generic structures Purdue, August 17, 2017 1 / 32



What is this talk about?

Background:

Model theory, classification theory, notions of independence.

Generic structures / generic theories.

The specific setting: NSOP1.

New properly NSOP1 examples:

Generic functions

Generic expansions and Skolemizations

Generic projective planes

This is all joint work:

Alex Kruckman and Nicholas Ramsey, Generic expansion and
Skolemization in NSOP1 theories, arXiv:1706.06616, June 2017.

Gabriel Conant and Alex Kruckman, Independence in generic
incidence structures, arXiv:1709.09626, September 2017.
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What is model theory about?

Model theory studies (usually complete) first-order theories.

Emphasis on semantics, rather than syntax:
Models, rather than proofs.
Definable sets, rather than formulas.
Applications, rather than foundations.
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Complicated theories

The first-order theories ZFC (set theory) and PA (Peano arithmetic) are
very complicated:

Interpret large chunks of mathematics.

Undecidable, and no computably enumerable completions
(Gödel’s Theorems apply).

Quantifier hierarchies do not collapse.

Lots of complicated definable sets.

Lots of complicated models.

These theories make models theorists sad.
To study their model theory, very specialized tools are needed.
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Tame theories

The theories ACF0 (algebraically closed fields of characteristic 0) and
Q-Mod (rational vector spaces) are very tame:

Decidable and complete.

Quantifier elimination.

Definable sets are easy to understand and mathematically meaningful.

Few models, classified up to isomorphism by transcendence degree
over Q (in ACF0) and dimension (in Q-Mod).

It follows that these theories are uncountably categorical: Up to
isomorphism, there is only one model of size κ, for all κ > ℵ0.

These theories make model theorists happy.
How can we find theories which will make us happy?
What distinguishes tame theories from complicated ones?
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Generic theories: Robinson (’50s and ’60s)

Question 1: How can we find theories which will make us happy?

Fact

For a theory T , the following are equivalent:

1 T can be axiomatized by sentences of the form ∀x∃y ϕ(x, y), where ϕ
is quantifier-free and x and y are possibly empty tuples.

2 The class of models of T is closed under directed colimits (e.g. unions
of chains).

Such theories are called inductive.

Definition

A model N |= T is existentially closed if whenever N ⊆ N ′ |= T , if
N ′ |= ∃y ϕ(a, y) with a ∈ N and ϕ quantifier-free, then N |= ∃y ϕ(a, y).

For example, a field K is existentially closed if and only if it is algebraically
closed: if a system of polynomial equations has a solution in a field
extension K ⊆ K ′, then it already has a solution in K (Nullstellensatz).
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Generic theories: Robinson (’50s and ’60s)

Fact

If T is inductive, then every model of T embeds in an existentially closed
model of T .

Let C = Mod(T ) be the class of all models of T .

Let C∗ ⊆ C be the subclass of existentially closed models.

If there is a theory T ∗ such that C∗ = Mod(T ∗), then we call T ∗ the
model companion of T , or the generic theory of C.
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Examples of generic theories

Theory Generic theory

Fields Algebraically closed fields

Integral domains Algebraically closed fields

Ordered fields Real closed fields

Linear orders Dense linear orders without endpoints

Boolean algebras Atomless Boolean algebras

Graphs The theory of the random (Rado) graph

Groups None

Division rings None
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We like generic theories

Suppose T ∗ is the model companion of T . Then:

T ∗ eliminates quantifiers (at least) down to existential formulas:
Every formula ϕ(x) is equivalent to ∃y ψ(x, y) with ψ quantifier-free.

Models of T ∗ serve as universal domains for C = Mod(T ):
If M is a large saturated model (“monster model”) of T ∗, then it
(elementarily) embeds all small models of T ∗, and hence embeds all
small models of T . We can make the simplifying assumption that all
objects of interest sit inside the monster model.

Completions of T ∗ usually make us much happier than arbitrary
completions of T .

For example, the theory of fields can be completed to Th(Q) which is
complicated. But a completion of the theory of algebraically closed fields
is determined by fixing the characteristic. These theories ACFp are tame.
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New ideas: Morley and Baldwin–Lachlan (’60s and ’70s)

Question 2: What distinguishes tame theories from complicated ones?

Theorem (Morley, ’65)

If a countable theory T is categorical in some uncountable cardinal κ
(there is only one model of T of cardinality κ up to isomorphism), then T
is categorical in every uncountable cardinal.

Idea of proof (Baldwin–Lachlan, ’71):
Every such theory T has a formula ϕ(x) defining a strongly minimal set,
which supports a “geometry” (a matroid), which has a dimension. Just as
in the case of ACF0 and Q-Mod, models of T are classified up to
isomorphism by their dimension.

Uncountably categorical theories are the tamest of the tame.
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Stable theories: Shelah (’70s and ’80s)

In the landmark book Classification Theory, Shelah vastly generalized
Morley’s work. Big ideas:

(1) Focus on dividing lines, often defined by combinatorial patterns in
definable sets. Both sides of the line should have powerful implications for
structure / nonstructure. The most important is stability.

Definition

T is stable if no formula ϕ(x; y) has the order property: there exist tuples
(ai)i∈ω and (bj)j∈ω such that M |= ϕ(ai; bj) ⇐⇒ i ≤ j.

(2) Focus on forking independence defined globally on subsets of M:

A |̂f
C

B is read “A is independent from B over C”.

Generalizes linear and algebraic independence in Q-Mod and ACF0.
In some cases (T superstable), |̂f gives rise to geometries and dimensions.
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Example: algebraic independence

I’m not going to define forking independence ( |̂f ), but I’ll define a simpler
independence relation: algebraic independence ( |̂a ).

Definition

A formula ϕ(x; a) is algebraic if it has only finitely many solutions (in M).
The (model-theoretic) algebraic closure of A, acl(A), is the set of all
elements b ∈M which satisfy some algebraic formula with parameters
from A.

We define A |̂a
C
B ⇐⇒ acl(AC) ∩ acl(BC) = acl(C).

In Q-Mod, acl(A) is the subspace spanned by A, and |̂a is the usual
linear independence.

In ACF0, acl(A) is the algebraic closure of the field generated by A,
and |̂a is the usual algebraic independence.

In a general stable theory, we may have |̂f 6= |̂a , but in any theory,
A |̂f

C
B =⇒ A |̂a

C
B.
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The main gap

The main result of Classification Theory is the following theorem.

Theorem (Shelah)

For every countable complete theory T , either:

T has the maximum number of models, 2κ, for all κ > ℵ0, or

(T is superstable, NDOP, NOTOP, and shallow.) The models of T
can be classified by certain “forking independent trees” of countable
models. Various shapes of classification occur, and in each case,
counting the possible trees yields precise descriptions of the number
of models in all uncountable cardinalities.

Stable theories are now well-understood. What can we say about unstable
theories?
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A map of the (first-order) universe

source: forkinganddividing.com
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Simple theories: Kim–Pillay (’90s and ’00s)

For k ∈ ω, a set of formulas {ϕn(x) | n ∈ ω} is k-inconsistent if any
subset of size k is inconsistent.

Definition (Shelah ’80)

T is simple if no formula ϕ(x; y) has the tree property: there exist tuples
(aη)η∈ω<ω and k ≥ 2 such that for all σ ∈ ωω, {ϕ(x; aσ|n) | n ∈ ω} is
consistent, but for any η ∈ ω<ω, {ϕ(x; aη̂ n) | n ∈ ω} is k-inconsistent.

Interest in simple theories increased when Kim and Pillay showed that
forking independence, originally defined in stable theories, continues to
behave well in the wider class of simple theories.

Theorem (Kim ’96)

T is simple if and only if |̂f is symmetric: A |̂f
C
B ⇐⇒ B |̂f

C
A.
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Characterizing |̂f

Theorem (Kim–Pillay ’96)

Let T be a complete theory and |̂ any relation on subsets of M |= T .
Then T is simple and |̂ = |̂f if and only if:

Invariance: If a |̂
C
b and tp(a′b′C ′) = tp(abC), then a′ |̂

C′ b
′.

Local character: For all a and B, there is C ⊆ B such that |C| ≤ |T |
and a |̂

C
B.

Finite character: a |̂
C
B if and only if for every finite tuple b from

B, a |̂
C
b.

Extension: For all a, B, and C, there exists a′ such that
tp(a′/C) = tp(a/C) and a′ |̂

C
B.

Symmetry: If a |̂
C
b, then b |̂

C
a.

Transitivity: If D ⊆ C ⊆ B, then a |̂
D
C and a |̂

C
B if and only if

a |̂
D
B.

... and the independence theorem: see next slide.
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The independence theorem

The most important condition in the axiomatic characterization of forking
independence in simple theories is the independence theorem:

Let M |= T be a model, A and B sets, and a and a′ tuples such that
tp(a/M) = tp(a′/M). If A |̂

M
B, a |̂

M
A, and a′ |̂

M
B, then there

exists a′′ such that

1 tp(a′′A/M) = tp(aA/M),

2 tp(a′′B/M) = tp(a′B/M), and

3 a′′ |̂
M
AB.
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Generic theories are often simple

Examples of simple theories:

ACFA: the generic theory of algebraically closed fields with an
automorphism.

The random graph (also the generic theories of bipartite graphs,
directed graphs, and k-hypergraphs).

The generic theory of all L-structures in a relational language L.

Theorem (Winkler ’75)

Let T be an L-theory which is model complete and eliminates ∃∞. Let L′

be a language containing L. Then T , considered as an L′-theory, has a
model companion TL′ , the generic expansion of T to L′.

Theorem (Chatzidakis–Pillay ’98)

Generic relational expansions preserve simplicity: If T is simple and the
new symbols in L′ are all relation symbols, then TL′ is simple.
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The generic binary function

What happens with function symbols?

Let T ∅L be the generic theory of all L-structures.

If L contains a single binary function f , then already T ∅L (the generic
theory of magmas) is not simple.
The formula ϕ(x; y1, y2) : f(x, y1) = y2 has the tree property.

Question (Jěrábek)

Is T ∅L always NSOP1?

(Later, Jěrábek independently answered this question)
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NSOP1 theories: Chernikov–Kaplan–Ramsey (’10s)

Definition (Shelah ’04)

T is NSOP1 if no formula ϕ(x; y) has SOP1: there exist tuples (aη)η∈2<ω

such that for all σ ∈ 2ω, {ϕ(x; aσ|n) | n ∈ ω} is consistent, but for any
ν, η ∈ 2<ω, if ν 0̂ ≤ η, then {ϕ(x; aη), ϕ(x; aν 1̂)} is inconsistent.

Snappy name forthcoming — for now, “NSOP1”.

If a theory is properly NSOP1 (NSOP1 but not simple), then |̂f is badly
behaved. But interest in NSOP1 increased when Ramsey introduced
another independence relation (loosely inspired by a suggestion of Kim),
which is well-behaved in any NSOP1 theory: Kim independence |̂K.

Theorem (Kaplan–Ramsey ’17)

T is NSOP1 if and only if |̂K is symmetric.

In any theory T , |̂f =⇒ |̂K. In simple theories, |̂f = |̂K.
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If a theory is properly NSOP1 (NSOP1 but not simple), then |̂f is badly
behaved. But interest in NSOP1 increased when Ramsey introduced
another independence relation (loosely inspired by a suggestion of Kim),
which is well-behaved in any NSOP1 theory: Kim independence |̂K.

Theorem (Kaplan–Ramsey ’17)

T is NSOP1 if and only if |̂K is symmetric.

In any theory T , |̂f =⇒ |̂K. In simple theories, |̂f = |̂K.
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Characterizing |̂K

Crucially, there is a Kim–Pillay style characterization of |̂K in NSOP1.

Theorem (Kaplan–Ramsey ’17)

Let T be a complete theory and |̂ any relation on subsets of M |= T .
Then T is NSOP1 and |̂

M
= |̂K

M
for all M |= T if and only if:

1 Strong finite character and witnessing: if a 6 |̂
M
b, then there is a

formula ϕ(x, b,m) ∈ tp(a/bM) such that for any a′ |= ϕ(x, b,m),
a′ 6 |̂

M
b. Moreover, if (bi)i∈ω is a Morley sequence over M in a

global M -finitely satisfiable type extending tp(b/M), then
{ϕ(x, bi,m) | i ∈ ω} is inconsistent.

2 Existence: a |̂
M
M .

3 Monotonicity: if aa′ |̂
M
bb′, then a |̂

M
b.

4 Symmetry: if a |̂
M
b, then b |̂

M
a.

5 The independence theorem.
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Deficiencies of |̂K

The main property of |̂f in simple theories which is lost by |̂K in NSOP1

theories is base monotonicity:

If D ⊆ C ⊆ B and A |̂f
D
B, then A |̂f

C
B.

Also, we currently only know how to define A |̂K
M
B when M |= T .

It’s an open problem to define |̂K in a sensible way over arbitrary base sets.
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Generic L-structures

Theorem (K.–Ramsey ’17)

Let T ∅L be the generic theory of all L-structures.

T ∅L eliminates quantifiers, and acl(A) = 〈A〉, the substructure
generated by A.

|̂a satisfies the independence theorem over arbitrary sets.

It follows easily that T ∅L is NSOP1 and |̂K = |̂a over models.

|̂f is obtained by “forcing” base monotonicity on |̂a : A |̂f
C
B if and

only if A |̂a
C′ B for all C ⊆ C ′ ⊆ acl(BC).

e.g. generically, if f(a, b) = c, then bc |̂f ∅ a, but a 6 |̂a
b
c, so a 6 |̂f∅ bc.

Forking = dividing for complete types, but when L contains an n-ary
function (n ≥ 2), there is a formula which forks but does not divide.

T ∅L has weak elimination of imaginaries.

Alex Kruckman (IU Bloomington) Independence in generic structures Purdue, August 17, 2017 24 / 32



Classification of the generic L-structure

Relation arities: ≤ 0 ≤ 1 any any

Function arities: ≤ 0 ≤ 1 ≤ 1 any

T ∅L is: uncountably categorical stable* simple* NSOP1

* If T ∅L is stable/simple, then it is superstable/supersimple if and only if
there is at most one unary function symbol in L.
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Generic Skolemization

Typically, a formula ϕ(x; a) may have many solutions in M, but there may
be no definable solution. For example, the polynomial x2 = 2 has two
solutions in C, which are conjugate by an automorphism.

A Skolem function fϕ(y) for ϕ(x; y) takes parameters as inputs and
produces a solution to the formula when possible:

∀y (∃xϕ(x; y)→ ϕ(fϕ(y); y)).

Theorem (Winkler ’75)

Let T be an L-theory which is model complete and eliminates ∃∞. Let
LSk = L ∪ {fϕ(y) | ϕ(x; y) an L-formula}. Let T+ be T together with the
Skolem axiom given above for each L-formula ϕ(x; y). Then T+ has a
model companion TSk, the generic Skolemization of T .
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Generic expansions and Skolemizations

Theorem (K.–Ramsey ’17)

Generic expansions preserve NSOP1: If T is NSOP1, then TL′ is
NSOP1. Further, letting M′ |= TL′ and M |= T be its reduct to L,

a |̂K
M

b in M′ ⇐⇒ aclL′(Ma) |̂K
M

aclL′(Mb) in M.

Generic Skolemizations preserve NSOP1: If T is NSOP1, then TSk is
NSOP1. Further, letting M′ |= TSk and M |= T be its reduct to L,

a |̂K
M

b in M′ ⇐⇒ aclLSk
(Ma) |̂K

M

aclLSk
(Mb) in M.

Again, the main difficulty is proving the independence theorem. The proof
involves some technical work on the relationship between |̂K and |̂a in
arbitrary NSOP1 theories.
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Generic projective planes

An incidence structure is a structure in the language {P,L, I}, where:

P and L are unary relation partitioning the structure into two disjoint
sets (“points” and “lines”)

I is a binary relation (“incidence”) such that if I(a, b) holds, then
a ∈ P and b ∈ L.

In other words, an incidence structure is a bipartite graph with the two
halves of the partition named.

An incidence structure A is a if any two points are incident with one line
and any two lines are incident with one point.
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I is a binary relation (“incidence”) such that if I(a, b) holds, then
a ∈ P and b ∈ L.

In other words, an incidence structure is a bipartite graph with the two
halves of the partition named.

An incidence structure A is a partial plane if any two points are incident
with at most one line and any two lines are incident with at most one
point. Let T p2,2 be the theory of partial planes.
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Generic projective planes

Equivalently, an incidence structure is a partial plane if it does not contain
a copy of the complete bipartite graph K2,2.

Almost everything I will say can be generalized to T pm,n the theory of
incidence structures which do not contain a copy of Km,n, for m,n ≥ 2.
But we’ll stick to projective planes for simplicity.

For any subset A of a projective plane B, there is a smallest projective
plane containing it, called its I-closure, obtained by iteratively adding the
intersection points of all pairs of lines, and the connecting lines of all pairs
of points.

Theorem (Conant–K. ’17)

T p2,2 has a model companion T2,2, which is also the model companion of
T c2,2. In T2,2, acl coincides with I-closure, and T2,2 eliminates quantifiers
“down to existential quantifiers over the I-closure”.
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Independence and NSOP1

Define A |̂I
C
B if and only if A |̂a

C
B and there are no incidences

between acl(AC) \ acl(C) and acl(BC) \ acl(C).

We can then prove very similar results as in the case of T ∅L:

Theorem (Conant–K. ’17)

|̂I satisfies the independence theorem over arbitrary sets.

It follows easily that T2,2 is NSOP1 and |̂K = |̂I over models.

|̂f is obtained by “forcing” base monotonicity on |̂I : A |̂f
C
B if and

only if A |̂I
C′ B for all C ⊆ C ′ ⊆ acl(BC).

Forking = dividing for complete types, but there is a formula which
forks but does not divide.

T2,2 has weak elimination of imaginaries.
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Failure of simplicity

Let p1 and p2 be points and `1 and `2 lines such that there are no
incidences between the pi and `j , but the unique line `∗ through p1 and p2
contains the unique point p∗ at the intersection of `1 and `2.

Then p1`1 |̂I ∅ p2`2. But p∗ ∈ acl(p1`1`2), so `∗ ∈ acl(p1`1`2), and `∗ is
incident to p2. Thus p1`1 6 |̂I `2 p2`2, and |̂I fails base monotonicity.

Letting ϕ(x1, x2, x
∗, y1, y2, y

∗) be the conjunction of all atomic formulas
satisfied by (p1, p2, p

∗, `1, `2, `
∗), one can show that the formula

ψ(x1, x2; y1, y2) : ∃x∗ ∃y∗ ϕ(x1, x2, x∗, y1, y2, y∗) has the tree property.
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Countable models

A quadrangle is 4 points in a projective plane, no 3 of which lie on a line.

A projective plane is desarguesian (i.e. it satisfies the classical Desargues’s
Theorem) if and only if it is isomorphic to a projective plane over a
division ring. In any desarguesian plane, any two quadrangles are
conjugate by an automorphism.

In contrast, we explicitly construct continuum-many 4-types over ∅ relative
to T2,2. This shows that T2,2 has no countable saturated model.

Every partial plane embeds in a projective plane. But the following is a
longstanding open problem.

Question (Erdős, essentially)

Does every finite partial plane embed in a finite projective plane?

It turns out that T2,2 has a countable prime model if and only if this
question has a positive answer.
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