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Motivation 1: Projective Fräıssé theory

Let’s begin by recalling the basics of Fräıssé theory.

A class K of finite structures (in a finite relational language) is a
Fräıssé class if it is closed under substructure (HP) and satisfies JEP
and AP.

Under these conditions, K has a Fräıssé limit M , constructed as a
direct limit of finite structures in K along embeddings, and satisfying
universality and homogeneity. Going back and forth, we also have
ultrahomogeneity: any two isomorphic substructures are conjugate by
an automorphism.

The first-order theories of Fräıssé limits are exactly the countably
categorical theories with quantifier elimination. The “embedding
extension properties” are expressible by ∀∃ axioms.

Alex Kruckman (IU Bloomington) Foundations of Cologic January 18, 2017 3 / 32



Motivation 1: Projective Fräıssé theory
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Fräıssé class if it is closed under substructure (HP) and satisfies JEP
and AP.
Under these conditions, K has a Fräıssé limit M , constructed as a
direct limit of finite structures in K along embeddings, and satisfying
universality and homogeneity. Going back and forth, we also have
ultrahomogeneity: any two isomorphic substructures are conjugate by
an automorphism.

M M M
∼= //M

B

``

=⇒

A

OO

A

OO

>>

A

OO

∼= // A′

OO
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The first-order theories of Fräıssé limits are exactly the countably
categorical theories with quantifier elimination. The “embedding
extension properties” are expressible by ∀∃ axioms.

Alex Kruckman (IU Bloomington) Foundations of Cologic January 18, 2017 3 / 32



Motivation 1: Projective Fräıssé theory

[Solecki, Irwin, Panagiotopoulos, etc.]

Now let K a class of finite structures (in a finite relational language),
considered together with certain surjective maps (“coembeddings”)
between them.

K is a projective Fräıssé class if it is closed under quotients by
coembeddings (dual to HP), and satisfies the duals of JEP and AP.
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Motivation 1: Projective Fräıssé theory

Under these hypotheses, K has a projective Fräıssé limit M , constructed
as an inverse limit of finite structures in K along coembeddings, and
satisfying the duals of universality and homogeneity.

M

����

M

����

    
B

~~~~
A A

Here the maps out of M are continuous coembeddings:

As an inverse limit of finite sets, M is naturally a Stone space
(compact, Hausdorff, zero-dimensional = basis of clopen sets).

We equip the finite structures in K with the discrete topology.
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Motivation 1: Projective Fräıssé theory

Going back-and-forth, a projective Fräıssé limit M is ultracohomogeneous:
Any two isomorphic finite quotients are conjugate by an isomorphism.
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Idea: There should be a full first-order “cologic”, in which:

Finite quotients play the role of finite substructures.

The “coembedding extension properties” are expressible as ∀∃ axioms.

Projective Fräıssé theory is the special case of “cocountably
categorical” cotheories with quantifier elimination.
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Corelations and costructures

For ordinary first-order structures:
An n-tuple from M is a map [n]→M ([n] = {1, . . . , n}).
We denote the set of n-tuples by Mn.
An n-ary relation R on M is a set of n-tuples from M , R ⊆Mn.

Definition (Solecki)

An n-cotuple from a Stone space M is a continuous map M → [n].
We denote the set of n-cotuples by [n]M .
An n-ary corelation R on M is a set of n-cotuples from M : R ⊆ [n]M .

Definition

A corelational signature is a set of corelation symbols R, together with an
arity ar(R) ≥ 1 for each R ∈ R.

Definition

A costructure for the corelational cosignature R is a Stone space M
together with an ar(R)-ary corelation RM on M for each R ∈ R.
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Corelations and costructures

We sometimes think of an n-cotuple f : M → [n] as a labeled partition of
M into n clopen sets, f−1({1}), . . . , f−1({n}).

Note that some of the pieces may be empty, if f is not surjective.

Corelations (and hence coformulas) express properties of partitions.
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Coembeddings

Let M and N be costructures. Given a continous map f : M → N , any
n-cotuple A : N → [n] pulls back to an n-cotuple A ◦ f : M → [n].

M
f // N

A // [n]

Definition

A continuous map f : M → N is a coembedding if

1 It is surjective, and

2 A ∈ RN if and only if (A ◦ f) ∈ RM , for every n-ary corelation R in
the language and every n-cotuple A from N .
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Why topology?

Set ∼= ind-FinSet: Every set is the filtered colimit of its finite subsets.
Stone ∼= pro-FinSet: Every Stone space is the cofiltered limit of its discrete
finite quotients.

S

  (( ** ++. . . // A3
// A2

// A1

The topology on S captures the pro-structure:

A basic clopen set in S is the preimage of a subset of Ai for some i.

A map T → S is continuous iff it is induced by a coherent family of
maps between the finite quotients of T and S.

Slogan: Logic explores infinite structures via their finite subsets.
Cologic explores infinite costructures via their finite quotients.
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A final word on projective Fräıssé theory

It appears that corelational signatures provide the the “correct” general
context for projective Fräıssé theory.

Theorem (Panagiotopoulos, ’16)

1 Let S be any second-countable Stone space. Then a subgroup G of
Homeo(S) is closed in the compact-open topology if and only if
G = Aut(M) for some projective Fräıssé limit M with domain S in a
corelational signature.

2 Let Y be any second-countable compact Hausdorff space. Then there
is a projective Fräıssé class K in a corelational signature, such that
the projective Fräıssé limit M admits a canonical equivalence relation
∼, and M/∼ is homeomorphic to Y .

This generalizes many previous examples in which compact Hausdorff
spaces were realized as quotients of projective Fräıssé limits.
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Syntax

Let X = {x1, . . . , xk} be a finite set of “covariables”. An n-cotuple of
covariables in context X is a map t : X → [n].

We can represent an n-cotuple by an n-tuple describing a partition of X.

Example: (x1 t x3, ∅, x2) is a 3-cotuple in context X = {x1, x2, x3}.

x1 // 1

x2

��

2

x3

GG

3

Think of the covariables as labeling a clopen partition of a costructure M .
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Syntax

An atomic coformula in context X is:

R(t(X)), where t is an ar(R)-cotuple of covariables in context X.

�i t(X), where t is an n-cotuple of covariables in context X and
1 ≤ i ≤ n. (This is the dual of equality.)

A coformula in context X is:

An atomic coformula in context X.

A Boolean combination of coformulas in context X.

∃(y t z = xi)ψ({x1, . . . , y, z, . . . , xn}), or
∀(y t z = xi)ψ({x1, . . . , y, z, . . . , xn}), where ψ is a coformula in
context (X \ {xi}) ∪ {y, z}
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Semantics

Let M be a costructure given together with an X-cotuple A : M → X,
and let ϕ(X) be a coformula in variable context X. We will define the
satisfaction relation M |= ϕ(A).

Any n-cotuple of covariables in context X, t : X → [n], induces an
n-cotuple t ◦A : M → [n] from M by composition, which we denote t(A).

M
A
//

t(A)

((
X

t
// [n]

M |= R(t(A)) iff t(A) ∈ RM .

M |= �i t(A) iff t(A)−1({i}) = ∅.
The usual satisfaction rules hold for Boolean combinations.

Note: In ordinary logic, equality tests for injectivity of a tuple [n]→M .
In cologic, coequality (�i) tests for surjectivity of a cotuple M → [n].
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Semantics for quantifiers

Let X = {x1, . . . , xn}, and let X̂ = (X \ {xi}) ∪ {y, z}.
Define si : X̂ → X by si(xj) = xj for j 6= i and si(y) = si(z) = xi.
A lift of the X-cotuple A : M → X is an X̂-cotuple Â : M → X̂ such that
si ◦ Â = A.

M
Â //

A   

X̂

si
��
X

M |= ∃(y t z = xi)ψ({x1, . . . , y, z, . . . , xn}) iff there exists a lift
Â : M → X̂, such that M |= ψ(Â).

M |= ∀(y t z = xi)ψ({x1, . . . , y, z, . . . , xn}) iff for all lifts
Â : M → X̂, M |= ψ(Â).

Note: A lift Â of A is a refinement of the partition given by A. So we are
quantifying over finer partitions of M .
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si ◦ Â = A.

M
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Cosentences and cotheories

Definition

A cosentence is a coformula in the singleton context ∗.

Note: Any costructure M has a unique ∗-cotuple ! : M → ∗.

We will suppress the singleton context for sentences:

We will write ϕ instead of ϕ(∗).
We will write M |= ϕ instead of M |= ϕ(!).

Definition

A cotheory is a set of cosentences.
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Example: What can you say in the empty language?

Not all Stone spaces (costructures in the empty language) are
coelementarily equivalent.

There exists an isolated point:

∃(x1 t x2 = ∗) (¬�1 (x1, x2) ∧ ∀(y1 t y2 = x1)

(�1(y1, y2, x2) ∨�2(y1, y2, x2))

There exists a clopen perfect set:

∃(x1 t x2 = ∗) (¬�1 (x1, x2) ∧ ∀(y1 t y2 = x1) (¬�1 (y1, y2, x2)→
∃(z1 t z2 = y1)(¬�1 (z1, z2, y2, x2) ∧ ¬�2 (z1, z2, y2, x2))))

Theorem

Stone spaces are coelementarily equivalent (i.e. they satisfy the same
cosentences in the empty language) if and only if their Boolean algebras of
clopen sets are elementarily equivalent.

Elementary classes of Boolean algebras are classified by Tarski invariants.
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Motivation 2: The cologic of profinite groups

[Cherlin, van den Dries, Macintyre, Chatzidakis]

In an influential unpublished paper, “The elementary theory of regularly
closed fields”, Cherlin, van den Dries, and Macintyre introduced a
“cologic” of profinite groups (e.g. Galois groups) in order to study the
model theory of PAC fields.

CDM cologic is just ordinary first-order logic on a multisorted structure
encoding the full inverse system of finite quotients of a profinite group G:

One sort for each n ≥ 1. Sort n consists of the disjoint union of all
finite quotients of G of size n.

A ternary relation ·n for each sort n, such that ·n(x, y, z) iff all three
elements live in the same finite quotient of size n, and x · y = z.

A binary relation πm,n for each pair of sorts m ≥ n, such that
πm,n(x, y) iff x ∈ H1 of size m, y ∈ H2 of size n, and the quotient
map πH2 : G → H2 factors through the quotient map πH1 : G → H1,
as πH2 = ρ ◦ πH1 , and ρ(x) = y.
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finite quotients of G of size n.

A ternary relation ·n for each sort n, such that ·n(x, y, z) iff all three
elements live in the same finite quotient of size n, and x · y = z.

A binary relation πm,n for each pair of sorts m ≥ n, such that
πm,n(x, y) iff x ∈ H1 of size m, y ∈ H2 of size n, and the quotient
map πH2 : G → H2 factors through the quotient map πH1 : G → H1,
as πH2 = ρ ◦ πH1 , and ρ(x) = y.
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Profinite groups as costructures

Option 1: Let L be the corelational signature with one n-ary corelation
symbol RH for each finite group H with domain [n].

To any profinite group G, we can associate a canonical L-costructure with
the same underlying Stone space G:
Let A : G→ [n] be an n-cotuple. Then, for any group H with domain [n],
G |= RH(A) if and only if A : G → H is a surjective group homomorphism.

Option 2: Develop cologic for pro-C objects, where C is any category
with finite limits.

Taking C = FinSet gives cologic in the sense of this talk.

Taking C = FinGrp makes profinite groups costructures in the empty
language. e.g. For a finite group H, an “H-cotuple” from a profinite
group G is a continuous homomorphism G → H.

This can be done! In fact, it seems like the right level of generality.
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Costructures as presheaf structures

Following CDM, we can encode a costructure M as an ordinary
many-sorted first-order structure:

One sort Sn for each n ≥ 0, interpreted as [n]M (= Hom(M, [n])).
One function symbol f : Sm → Sn for each function f : [m]→ [n],
interpreted as (f ◦ −) : [m]M → [n]M .
One unary relation symbol R on sort Sn for each corelation symbol
R, interpreted in the obvious way.

A structure in this language is called a presheaf structure, because the sorts
and functions encode a functor FinSet→ Set (a presheaf on FinSetop).

Stoneop = (pro-FinSet)op can be identified via S 7→ Hom(S,−) with the
subcategory of SetFinSet consisting of those functors FinSet→ Set which
preserve finite limits. This gives rise to a duality:

(Costructures,Coembeddings)op ∼= (Mod(Tlim),Embeddings)

Where Tlim is the theory in the language of presheaf structures asserting
that finite limits are preserved.
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Costructures as presheaf structures

The sentences and formulas of cologic correspond to sentences and
formulas in a fragment of first-order logic over presheaf structures: all
formulas are unary, all quantifiers are bounded [∀(x ∈ f−1(y))ϕ(x)], etc.
But modulo Tlim, this fragment is essentially as expressive as full
first-order logic.

Having “interpreted” cologic in many-sorted first-order logic, we get:

Corollary (Compactness)

A cotheory T is satisfiable if and only if every finite subset of T is
satisfiable.

Duality is useful for transporting theorems from ordinary first-order logic to
cologic. But I also believe that it’s valuable to have a natural syntax for
cologic that refers directly to the intended semantics, rather than resorting
to duality at every turn.
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Motivation 3: Ultracoproducts of compact spaces

[Bankston]

Ultraproducts can be described categorically as direct limits of products:∏
U

Mi =
∏
i∈I

Mi/U ∼= lim−→
X∈U

∏
i∈X

Mi

with connecting maps the projections
∏
i∈XMi →

∏
i∈Y Mi when Y ⊆ X.

To define the ultracoproduct, just dualize:∐
U

Mi
∼= lim←−

X∈U

∐
i∈X

Mi

with connecting maps the inclusions
∐
i∈Y Mi →

∐
i∈XMi when Y ⊆ X.
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Motivation 3: Ultracoproducts of compact spaces

∐
U

Mi
∼= lim←−

X∈U

∐
i∈X

Mi

Problem: When the Mi are sets,
∐
i∈XMi is disjoint union, lim←− is

intersection, and when U is nonprincipal,
∐
U Mi is empty!

Bankston’s Solution: Work in the category of compact Hausdorff spaces.
Then the infinite coproduct

∐
i∈IMi is the Stone-Čech compactification

of the disjoint union, and the intersection is nontrivial.

Bankston has developed a remarkable amount of dualized model theory for
compact Hausdorff spaces, without any syntax.

For example, two spaces S and T are defined to be colementarily
equivalent if and only if they have homeomorphic ultracopowers!
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Ultracoproducts of costructures

Let (Mi)i∈I be a family of costructures, and let U be an ultrafilter on I.
Define

∐
U Mi = lim←−X∈U

∐
i∈XMi (limits and coproducts taken in Stone).

The discrete space [n] is cocompact in Stone: the functor Hom(−, [n])
turns cofiltered limits into filtered colimits.

Hom( lim←−
X∈U

∐
i∈X

Mi, [n]) ∼= lim−→
X∈U

Hom(
∐
i∈X

Mi, [n])

∼= lim−→
X∈U

∏
i∈X

Hom(Mi, [n])

So an n-cotuple A :
∐
U Mi → [n] is determined by an n-cotuple

Ai : Mi → [n] for each i, modulo equality on a set in the ultrafilter.

Define
∐
U Mi |= R(A) iff {i ∈ I |Mi |= R(Ai)} ∈ U .
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 Los’s theorem

Let PS(M) be the presheaf structure corresponding to the costructure M .

We have PS(
∐
U Mi) ∼=

∏
U PS(Mi).

Using duality, or adapting the usual proof:

Theorem ( Los’s theorem for cologic)

Let U be an ultrafilter on I, and let {Mi | i ∈ I} be a family of
costructures. Let ϕ(X) be a coformula in context X, let A :

∐
U Mi → X

be an X-cotuple from M , and let (Ai : Mi → X)i∈I be any lift of A to a
family of X-cotuples from the Mi. Then

∐
U Mi |= ϕ(A) if and only if

{i ∈ I |Mi |= ϕ(Ai)} ∈ U .

 Los’s theorem also gives a direct proof of the compactness theorem for
cologic, in the usual way.
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Motivation 4: Coalgebraic logic

[Rutten, Adámek, Kurz, Rosický, Moss, etc.]

Let C be a category, and let F be a functor C → C.

An F -algebra is an object A and a map η : F (A)→ A.

Example: F : Set→ Set, F (X) = X2 t C (C a set).
An F -algebra is a set A and a map η : A2 t C → A, determined by maps
f : A2 → A and c : C → A, i.e. a structure for the signature with one
binary function symbol f and a set C of constant symbols.

An F -coalgebra is an object A and a map ε : A→ F (A).

Example: F : Stone→ Stone, F (X) = X2 × C (C a Stone space).
An F -coalgebra is a Stone space S and a map η : S → S2 × C,
determined by maps f : S → S, g : S → S, and c : S → C.
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Motivation 4: Coalgebraic logic

The constant space C could be any Stone space, e.g. the underlying space
of a costructure. For this example, we’ll take C = {a, b}.

A coalgebra for the functor F (X) = X2 × C is an transition system with
inputs f and g, labeled by the constants C.

•a
f �� g // •a

f ��

g

��
•b
f
WW

g

OO

•a

f
aa

goo

There are notions of “universal coalgebra” and “varieties of coalgebras”
for coalgebras on Set, dual to classical universal algebra. But the
“coalgebraic logics” in these frameworks are infinitary. Cologic gives a
finitary compact logic for coalgebras on Stone.
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Coterms

Joke

Question: What is a cotuple of coterms?
Answer: A cotuple from the coterm coalgebra.
Question: What is the coterm coalgebra?
Answer: The cofree coalgebra on the covariables.

The cofree coalgebra on the covariables X = {x1, x2} (for example)
contains elements witnessing all possible behaviors under {f, g}-transitions
and labelling by C and X (i.e. complete binary trees labeled by C ×X).
A clopen set from the cofree coalgebra corresponds to a finite partial
description of such a behavior:

•(a,x1)
f

yy

g

%%
•(b,x1tx2) •(atb,x2)
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Coterms

For example, let C(X) be the cofree coalgebra on X. There is a 2-coterm
(a continuous map t : C(X)→ [2]) described by

(•(x1,a)
f−→ •(x2,b), everything else).

Then the sentence ∀(x1 t x2 = ∗)�1 (•(x1,a)
f−→ •(x2,b), everything else)

asserts that no clopen partition can separate two points s and t, such that
s is labeled by a, t is labeled by b, and f(s) = t.

Since any two distinct points can be separated by a clopen partition, this
means there are no such points.

It’s not hard to give a concrete syntax for coterms for simple functors like
F , but it’s work in progress to extend this to a more class of cofinitary
functors on Stone.
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Syntax and semantics, this time with coalgebra

Let C(X) be the cofree coalgebra on X. An n-coterm in context X is an
n-cotuple from C(X), a continuous map t : C(X)→ [n].
An atomic coformula in context X is:

R(t(X)), where t is an ar(R)-coterm in context X.

�i t(X), where t is an n-coterm in context X and 1 ≤ i ≤ n.

Let M be a costructure given together with an X-cotuple A : M → X. A
induces a canonical map A′ : M → C(X), and any n-coterm in context
X, t : C(X)→ [n], induces an n-cotuple t ◦A′, which we denote t(A).

M
A′
//

A ""

t(A)

))
C(X)

π

��

t
// [n]

X

M |= R(t(A)) if and only if t(A) ∈ RM .

M |= �i t(A) if and only if t(A)−1({i}) = ∅.
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Future plans

Cologic on general pro-categories (& logic on general ind-categories!).

Syntax for terms for general cofinitary functors.

Develop more model theory, e.g. stability theory.

Consider more general compact Hausdorff costructures (as suggested
by the work of Panagiotopoulos and Bankston).

Explore possible connections to:

Applications of coalgebras, e.g. in modal logic
Dual Ramsey theory (via “coindiscernibles”?)

Try to combine ordinary logic and cologic into a compact
second-order logic, via an ∈i,j relation between tuples a : [m]→M
and cotuples A : M → [n]:

M |= a ∈i,j A iff A(a(i)) = j (i.e. ai ∈ Aj).
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