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Motivation: Cologic

Pieces of first-order logic and model theory have been successfully dualized:

(Cherlin, van den Dries, and Macintyre; Chatzidakis) The first-order
“cologic” of profinite groups (e.g. absolute Galois groups of fields).

(Irwin and Solecki; Panagiotopoulos; others) Projective Fräıssé theory.

(Rutten; Moss; others) Coalgebraic logic and universal coalgebra.

(Bankston) Ultracoproducts and coelementary classes of compact
Hausdorff spaces.

Question: Is there a unified framework encompassing all these examples?

Answer: Yes.

First, we need to define a general categorical setting for first-order logic
that’s easy to dualize.
Given time, we’ll return to these examples very briefly at the end.
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(Rutten; Moss; others) Coalgebraic logic and universal coalgebra.
(When the base category is Stone or similar.)

(Bankston) Ultracoproducts and coelementary classes of compact
Hausdorff spaces. (In the special case of Stone spaces.)

Question: Is there a unified framework encompassing all these examples?
Answer: Yes.

First, we need to define a general categorical setting for first-order logic
that’s easy to dualize.
Given time, we’ll return to these examples very briefly at the end.

Alex Kruckman (IU Bloomington) First-order logic for LFP categories BLAST, August 17, 2017 2 / 26



Syntax

C is a small category, called the category of contexts.

Define the logic FOC inductively. For every object x ∈ C, a formula in
context x is

>x or ⊥x.

(ψ ∧ θ), (ψ ∨ θ), or ¬ψ, where ψ and θ are formulas in context x.

∃fψ, where f : x→ y is an arrow in C and ψ is a formula in context y.

We can also define (ψ → θ) as (¬ψ ∨ θ) and ∀fψ as ¬∃f¬ψ.

Now suppose C is a subcategory of D, called the category of domains.

If x is a context in C and M is a domain in D, an arrow a : x→M is
called an interpretation of x in M .
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Semantics

We give a semantics in D for the logic FOC by defining the relation
M |= ϕ(a) inductively. For every domain M ∈ D, every formula ϕ in
context x, and every interpretation a : x→M ,

If ϕ is >x, then M |= ϕ(a). If ϕ is ⊥x, then M 6|= ϕ(a).

If ϕ is (ψ ∧ θ), then M |= ϕ(a) iff M |= ψ(a) and M |= θ(a).

If ϕ is (ψ ∨ θ), then M |= ϕ(a) iff M |= ψ(a) or M |= θ(a).

If ϕ is ¬ψ, then M |= ϕ(a) iff M 6|= ψ(a).

If ϕ is ∃fψ, for f : x→ y, then M |= ϕ(a) iff there exists b : y →M
such that bf = a and M |= ψ(b).

y
∃b //M

x

f

OO

a

>>
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Example: L-structures

Fix a first-order signature L.

D, the category of L-structures (and L-homomorphisms).
C, the full category of finitely presentable L-structures.

Theorem

FOC , with semantics in D, has essentially the same expressive power as
first-order logic on L-structures.
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Translation: First-order to FOC

We translate a first-order formula ϕ with free variables from a finite set X
to an FOC formula in context T (X), the term algebra on X.

If ϕ is atomic, let ϕ̂ be ∃q>〈X|{ϕ}〉, where q : T (X)→ 〈X | {ϕ}〉 is
the obvious map.

If ϕ is ψ ∧ θ, ψ ∨ θ, or ¬ψ, let ϕ̂ be ψ̂ ∧ θ̂, ψ̂ ∨ θ̂, or ¬ψ̂, respectively.

If ϕ is ∃x′ ψ, where ψ is a formula with free variables from X ∪ {x′},
let ϕ̂ be ∃iψ̂, i : T (X)→ T (X ′) is the obvious map.

〈X | {ϕ}〉 ∃b //M

T (X)

q

OO

a

:: T (X ′)
∃b //M

T (X)

i

OO

a

<<
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Translation: FOC to first-order

We translate an FOC formula in context x to a first-order formula with
free variables from X, a finite set of generators of x.

If ϕ is >x, let ϕ̃ be >. If ϕ is ⊥x, let ϕ̃ be ⊥.

If ϕ is ψ ∧ θ, ψ ∨ θ, or ¬ψ, let ϕ̃ be ψ̃ ∧ θ̃, ψ̃ ∨ θ̃, or ¬ψ̃, respectively.

If ϕ is ∃fψ, where f : x→ y and ψ is a formula in context y:
Pick a finite presentation 〈{y1, . . . , y`} | {δ1, . . . , δm}〉 for y.
For each xj ∈ X, pick a term tj in Y such that tj(y) = f(xj).
Let ϕ̃ be

∃y1 . . . ∃yn

( m∧
i=1

δi(y)

)
∧

 n∧
j=1

xj = tj(y)

 ∧ ψ̃(y)

 .

y
∃b //M

x

f

OO

a

>>
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Locally finitely presentable categories

Question: Returning to general C and D, what properties do we need to
get a well-behaved logic FOC?

For the rest of this talk, let’s assume:

C has finite colimits.

The objects of D are the directed colimits along diagrams in C.

Every object x ∈ C is finitely presentable in the sense that
HomD(x,−) preserves directed colimits (every map x→ lim−→ yi
factors through some yi).

In other words,

1 D is a locally finitely presentable category, and C is equivalent to its
full subcategory of finitely presentable objects.

2 D is equivalent to ind−C, the formal co-completion of C under
directed colimits.
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Locally finitely presentable categories

Definition (Gabriel & Ulmer)

A category D is locally finitely presentable (LFP) if:

It is co-complete.

Every object is a directed colimit of finitely presentable objects.

The full subcategory F of finitely presentable objects is essentially
small, i.e. there is a set of isomorphism representatives of F .

Examples:

Set; SetX , for any set X; DB, for any LFP D and small category B.

StrL; Grp; Ring; Poset; Cat; ModT , where T is a first-order universal
Horn theory.

Lex(Cop,Set), the finite-limit preserving presheaves on C, for any
small category C with finite colimits.

The duals of ProFinSet ∼= Stone ∼= Boolop and ProFinGrp.
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Presheaf structures

Gabriel-Ulmer duality tells us that for any LFP category D,

D ∼= Lex(Cop, Set),

with the equivalence given by M 7→ HomD(−,M).

Let LPSh be the ordinary first-order language consisting of:

A sort Sx for each x ∈ C.

A function symbol f̃ of sort Sy → Sx for each arrow f : x→ y.

Let TPSh be the first-order theory asserting:

x 7→ Sx is a functor Cop → Set (i.e. f̃ ◦ g = g̃ ◦ f̃ and ĩd = id).

This functor preserves limits.
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The first-order translation

Theorem

FOC , with semantics in D, has essentially the same expressive power as
first-order logic in the language LPSh on models of TPSh.

This first-order translation implies we can import theorems (compactness,
Löwenheim-Skolem, etc.) and definitions (stability, NIP, etc.) from
first-order model theory for free.

...But doesn’t it make FOC redundant? I don’t think so:

1 FOC seems more natural than the many-sorted LPSh in examples.

2 Understanding this case will be useful in generalizing beyond LFP
categories, where we may not have a first-order translation.
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Sequents and sentences

I’ll describe a sequent calculus proof system for FOC , modeled on the
notion of a hyperdoctrine.

A sequent has the form ϕ⇒x ψ, where ϕ and ψ are formulas in context x.

A domain M satisfies ϕ⇒x ψ if M |= ϕ(a) implies M |= ψ(a) for every
interpretation a : x→M .

A sentence is a formula in context 0 (the initial object). Every sequent
ϕ⇒x ψ is equivalent to the sentence ∀!(ϕ→ ψ), where ! : 0→ x is the
unique arrow.
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Hyperdoctrines

Definition

Let B be a category with finite limits. A first-order (Boolean)
hyperdoctrine over B is a functor P : Bop → Bool, such that for every
arrow f : y → x in B, the Boolean homomorphism Pf : Px→ Py has a
left adjoint, i.e. a monotone map ∃f : Py → Px such that

ϕ ≤Py Pf(ψ) ⇐⇒ ∃fϕ ≤Px ψ,

satisfying the Beck-Chevalley condition: For every pullback square in B,

w
f ′
//

g′

��

z

g

��
y

f
// x

and every ϕ ∈ Py, we have Pg(∃f (ϕ)) = ∃f ′(Pg′(ϕ)).
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Substitution

We need a new formula-building operation to play the role of Pf in the
hyperdoctrine.

[ϕ]f is a formula in context y, when ϕ is a formula in context x and
f : x→ y is an arrow in C.

Semantics: Given a domain M and an interpretation b : y →M ,
M |= [ϕ]f (b) iff M |= ϕ(bf).

y
b //M

x

f

OO

bf

>>

It will follow from our proof rules that every formula is equivalent to one
built without any instances of substitution.
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Propositional rules

ϕ⇒x ϕ
ref

ϕ⇒x ψ ψ ⇒x θ

ϕ⇒x θ
trans

ϕ⇒x >x
true

ϕ⇒x ψ ϕ⇒x θ

ϕ⇒x ψ ∧ θ
and

ψ ∧ θ ⇒x ψ
andL

ψ ∧ θ ⇒x θ
andR

ψ ⇒x ϕ θ ⇒x ϕ

ψ ∨ θ ⇒x ϕ
or

ψ ⇒x ψ ∨ θ
orL

θ ⇒x ψ ∨ θ
orR

ϕ ∧ (ψ ∨ θ)⇒x (ϕ ∧ ψ) ∨ (ϕ ∧ θ) dist ⊥x ⇒x ϕ
false

>x ⇒x ϕ ∨ ¬ϕ
not1

ϕ ∧ ¬ϕ⇒x ⊥x
not2
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Substitution rules

For all arrows f : x→ y and g : y → z in C,

ϕ⇔x [ϕ]idx
id

[ϕ]gf ⇔z [[ϕ]f ]g
comp

ϕ⇒x ψ

[ϕ]f ⇒y [ψ]f
mon

>y ⇒y [>x]f
hom>

[⊥x]f ⇒y ⊥y
hom⊥

[ψ]f ∧ [θ]f ⇒y [ψ ∧ θ]f
hom∧

[ψ ∨ θ]f ⇒y [ψ]f ∨ [θ]f
hom∨
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Quantifier rules

For every arrow f : x→ y in C,

ϕ⇒y ψ

∃fϕ⇒x ∃fψ
mon∃

ϕ⇒y [∃fϕ]f
unit ∃f [θ]f ⇒x θ

counit

For every pushout square,

x
f //

g

��

y

g′

��
z

f ′
// w

[∃fϕ]g ⇒z ∃f ′ [ϕ]g′
bc
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Completeness and compactness

It’s easy to check that these rules are sound.

Theorem (Completeness)

Let T be a set of sequents. Then T |= ϕ⇒x ψ if and only if T ` ϕ⇒x ψ.

Proof idea: If T 6` ϕ⇒x ψ, build a countermodel to ϕ⇒x ψ as the
colimit of a directed system from C, carefully adding witnesses to the
necessary existential quantifiers.

Categorical interpretation: The logic FOC is the initial hyperdoctrine
over Cop, and it has a natural semantics in ind-C.
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Presenting LFP categories by signatures

In FOC , there are no interesting quantifier-free formulas - all the
complexity is pushed into the quantifiers.

That is, there are lots of interesting maps between finitely presentable
L-structures.

In contrast, every map between finite sets can be decomposed into a
composition of two kinds of maps: adding a new point and identifying two
points.

Traditional first-order logic takes C = FinSet (in which the arrows, and
hence quantifiers, are easy to understand) and adds extra structure via a
signature and atomic formulas.

Alex Kruckman (IU Bloomington) First-order logic for LFP categories BLAST, August 17, 2017 19 / 26



Presenting LFP categories by signatures

In FOC , there are no interesting quantifier-free formulas - all the
complexity is pushed into the quantifiers.

That is, there are lots of interesting maps between finitely presentable
L-structures.

In contrast, every map between finite sets can be decomposed into a
composition of two kinds of maps: adding a new point and identifying two
points.

Traditional first-order logic takes C = FinSet (in which the arrows, and
hence quantifiers, are easy to understand) and adds extra structure via a
signature and atomic formulas.

Alex Kruckman (IU Bloomington) First-order logic for LFP categories BLAST, August 17, 2017 19 / 26



Signatures and structures

Fix categories C and D as before.

Definition

A signature Σ consists of, for every context x ∈ C,

A set Rx, called the x-ary relation symbols.

A finitary (commutes with directed colimits) endofunctor F : D → D.

Definition

A Σ-structure is a domain M in D, together with, for every context x ∈ C,

An “x-ary relation”RM ⊆ HomD(x,M) for each R ∈ Rx.

An F -algebra structure on M , i.e. a map η : F (M)→M .

Adámek, Milius, and Moss showed that finitary functors on LFP categories
can be presented as quotients of “signature functors” by “flat equations”.
This allows for a definition of signatures in terms of “function symbol”
objects, and a more concrete description of terms (omitted here).
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Terms

The finitary endofunctor F automatically has a free algebra T (x) (the
term algebra) on any object x.

Definition

Let x, y ∈ C. A y-term in context x is an arrow y → T (x).

Given a y-term t in context x and an interpretation a : x→M , we obtain
a map tM (a), the “evaluation of t in M”.

y
t
//

tM (a)

((
T (x) //M

x

a

<<

i

OO
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Atomic formulas

Given a signature Σ, we build a logic FOC(Σ) as before, but with new
atomic formulas.

Definition

Let x ∈ C be a context. An atomic formula in context x is one of the
following:

s(x) = t(x), where s and t are y-terms in context x, for some y ∈ C.

R(t(x)), where t is a y-term in context x and R is a y-ary relation
symbol, for some y ∈ C.

Given a Σ-structure M , a formula ϕ(x) in context x, and a : x→M :

M |= s(a) = t(a) iff sM (a) = tM (a) in HomD(y,M).

M |= R(t(a)) iff tM (a) ∈ RM ⊆ HomD(y,M).
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Cologic

Now we can dualize: If Dop is LFP (e.g. if D = pro-C), we can form the
logic FOCop(Σ) with semantics in Dop.

“Corelations” and “coformulas” express properties of “cotuples” M → x.
Σ-structures are now coalgebras for cofinitary functors on D.

Example: D = Stone, C = FinSet (viewed as finite discrete spaces). An
interpretation a : M → x is a partition of M into |x| clopen sets.
∃f quantifies over refinements of this partition and tests for emptiness of
pieces of the partition (coequality) when f is not surjective.

M
∃b //

a
  

y

f

��
x
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Cologic - unifying the examples

The cologic of profinite groups, as defined by Cherlin, van den Dries,
and Macintyre, takes place is a multi-sorted first-order setting, which
is is essentially the same as the first-order translation (via presheaf
structures) of FOFinGrpop .

In the case of Stone spaces, Bankston’s coelementary classes are
exactly FOFinSetop-elementary classes.

Panagiotopoulos showed that any projective Fräıssé limit can be
viewed as the limit of a class of finite structures in a corelational
signature Σ. The FOFinSetop(Σ)-theories of projective Fräıssé limits
are characterized by “ℵ0-categoricity” and quantifier elimination.

Coalgebras for cofinitary functors on Stone are of some interest. For
example, coalgebras for the Vietoris functor are exactly the descriptive
general frames in modal logic. “Universal coalgebra” in this setting is
captured by “equational theories” in FOFinSetop(Σ).
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Future Work

1 Generalize to categories which are not locally finitely presentable. In
particular, it would be interesting to extend the framework to include:

1 Coalgebras on Set (possibly via Stone-Čech compactification).
2 Compact Hausdorff spaces (inspired by Bankston’s work on

coelementary classes in this category) and compact groups.

2 In concrete profinite structures, both the tuples and cotuples are
interesting. Is there a nice logic which talks about both at once?

3 Study model theoretic properties: nontrivial FOFinSetop(Σ)-theories
always have the strict order property and the independence property
(these are bad), but FOFinGrpop(Σ)-theories can be
model-theoretically tame (since they are interpretable in reasonable
theories of fields). What’s the deeper reason for this?

Alex Kruckman (IU Bloomington) First-order logic for LFP categories BLAST, August 17, 2017 25 / 26



References
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