Sampling Measures and Limits of Finite Structures

Alex Kruckman

University of California, Berkeley

May 20, 2014

Fix a countable relational signature Σ .

Fix a countable relational signature Σ .

Given a finite Σ -structure A and a quantifier-free formula $\phi(\overline{x})$,

$$p(\phi; A) = \frac{\left|\left\{\overline{a} \in A^n \mid A \models \phi(\overline{a})\right\}\right|}{|A^n|}.$$

 $p(\phi;A)$ is the probability that n elements sampled uniformly and independently from A satisfy $\phi.$

Fix a countable relational signature Σ .

Given a finite Σ -structure A and a quantifier-free formula $\phi(\overline{x})$,

$$p(\phi; A) = \frac{\left|\left\{\overline{a} \in A^n \mid A \models \phi(\overline{a})\right\}\right|}{|A^n|}.$$

 $p(\phi;A)$ is the probability that n elements sampled uniformly and independently from A satisfy $\phi.$

Definition (from combinatorics)

A sequence of finite structures $\langle A_i \rangle_{i \in \omega}$ converges if the sequence of real numbers $\langle p(\phi; A_i) \rangle_{i \in \omega}$ converges for all quantifier-free formulas ϕ .

Fix a countable relational signature $\boldsymbol{\Sigma}.$

Given a finite Σ -structure A and a quantifier-free formula $\phi(\overline{x})$,

$$p(\phi; A) = \frac{\left|\left\{\overline{a} \in A^n \mid A \models \phi(\overline{a})\right\}\right|}{|A^n|}.$$

 $p(\phi;A)$ is the probability that n elements sampled uniformly and independently from A satisfy $\phi.$

Definition (from combinatorics)

A sequence of finite structures $\langle A_i \rangle_{i \in \omega}$ converges if the sequence of real numbers $\langle p(\phi; A_i) \rangle_{i \in \omega}$ converges for all quantifier-free formulas ϕ .

What does the sequence $\langle A_i \rangle_{i \in \omega}$ converge to?

 $\langle A_i \rangle_{i \in \omega}$ gives rise to a map:

$$\begin{array}{l} \mathsf{Quantifier-free \ formulas} \to [0,1] \\ \phi \mapsto \lim_{i \to \infty} p(\phi;A_i) \end{array}$$

 $\langle A_i \rangle_{i \in \omega}$ gives rise to a map:

Quantifier-free formulas
$$\rightarrow [0, 1]$$

 $\phi \mapsto \lim_{i \to \infty} p(\phi; A_i)$

 $\langle A_i \rangle_{i \in \omega}$ gives rise to a map:

Quantifier-free formulas
$$\rightarrow [0, 1]$$

 $\phi \mapsto \lim_{i \to \infty} p(\phi; A_i)$

There are several useful ways of encoding this data in a limit object:

• Lovász and Szegedy: As a graphon.

```
\langle A_i \rangle_{i \in \omega} gives rise to a map:
```

Quantifier-free formulas
$$\rightarrow [0, 1]$$

 $\phi \mapsto \lim_{i \to \infty} p(\phi; A_i)$

- Lovász and Szegedy: As a graphon.
- Razborov: As a positive flag algebra homomorphism to \mathbb{R} .

```
\langle A_i \rangle_{i \in \omega} gives rise to a map:
```

Quantifier-free formulas
$$\rightarrow [0, 1]$$

 $\phi \mapsto \lim_{i \to \infty} p(\phi; A_i)$

- Lovász and Szegedy: As a graphon.
- Razborov: As a positive flag algebra homomorphism to \mathbb{R} .
- As a measure on the space of countable labeled structures.

```
\langle A_i \rangle_{i \in \omega} gives rise to a map:
```

Quantifier-free formulas
$$\rightarrow [0, 1]$$

 $\phi \mapsto \lim_{i \to \infty} p(\phi; A_i)$

- Lovász and Szegedy: As a graphon.
- Razborov: As a positive flag algebra homomorphism to \mathbb{R} .
- As a measure on the space of countable labeled structures.

For ϕ quantifier free and \overline{a} from $\omega,$

 $[\phi(\overline{a})] = \{ M \in X_{\Sigma} \mid M \models \phi(\overline{a}) \} \text{ is a basic clopen set.}$

For ϕ quantifier free and \overline{a} from ω ,

 $[\phi(\overline{a})] = \{ M \in X_{\Sigma} \mid M \models \phi(\overline{a}) \} \text{ is a basic clopen set.}$

For $\phi(\overline{x}) \in L_{\omega_1,\omega}$ and \overline{a} from ω ,

 $[\phi(\overline{a})] = \{ M \in X_{\Sigma} \mid M \models \phi(\overline{a}) \} \text{ is a Borel set.}$

For ϕ quantifier free and \overline{a} from ω ,

 $[\phi(\overline{a})] = \{M \in X_{\Sigma} \mid M \models \phi(\overline{a})\}$ is a basic clopen set.

For $\phi(\overline{x}) \in L_{\omega_1,\omega}$ and \overline{a} from ω ,

 $[\phi(\overline{a})] = \{ M \in X_{\Sigma} \mid M \models \phi(\overline{a}) \} \text{ is a Borel set.}$

$$\left([\exists x \ \phi(\overline{a}, x)] = \bigcup_{b \in \omega} [\phi(\overline{a}, b)]\right)$$

Alex Kruckman (UC Berkeley)

 S_∞ acts on X_Σ by permutations of $\omega.$ By an invariant measure, I mean a Borel probability measure on X_Σ which is invariant under this action.

 S_{∞} acts on X_{Σ} by permutations of ω . By an invariant measure, I mean a Borel probability measure on X_{Σ} which is invariant under this action.

For $\phi(\overline{x}) \in L_{\omega_1,\omega}$, write $\mu(\phi)$ for $\mu([\phi(\overline{a})])$ (for any tuple of distinct elements \overline{a} from ω).

 S_∞ acts on X_Σ by permutations of ω . By an invariant measure, I mean a Borel probability measure on X_Σ which is invariant under this action.

For $\phi(\overline{x}) \in L_{\omega_1,\omega}$, write $\mu(\phi)$ for $\mu([\phi(\overline{a})])$ (for any tuple of distinct elements \overline{a} from ω).

Fact

Let μ be an invariant measure. The following are equivalent:

- For any quantifier-free formulas ϕ and ψ and disjoint tuples \overline{x} and \overline{y} , $\mu(\phi(\overline{x}) \wedge \psi(\overline{y})) = \mu(\phi(\overline{x}))\mu(\psi(\overline{y})).$
- 2 The same, for ϕ and ψ formulas of $L_{\omega_1,\omega}$.
- µ is ergodic, i.e. for every almost surely invariant Borel set B ⊆ X_Σ, µ(B) = 0 or 1.

We will call such a measure a sampling measure.

 S_∞ acts on X_Σ by permutations of $\omega.$ By an invariant measure, I mean a Borel probability measure on X_Σ which is invariant under this action.

For $\phi(\overline{x}) \in L_{\omega_1,\omega}$, write $\mu(\phi)$ for $\mu([\phi(\overline{a})])$ (for any tuple of distinct elements \overline{a} from ω).

Fact

Let μ be an invariant measure. The following are equivalent:

- For any quantifier-free formulas ϕ and ψ and disjoint tuples \overline{x} and \overline{y} , $\mu(\phi(\overline{x}) \wedge \psi(\overline{y})) = \mu(\phi(\overline{x}))\mu(\psi(\overline{y})).$
- **2** The same, for ϕ and ψ formulas of $L_{\omega_1,\omega}$.
- µ is ergodic, i.e. for every almost surely invariant Borel set B ⊆ X_Σ, µ(B) = 0 or 1.

We will call such a measure a sampling measure.

For every sentence $\phi \in L_{\omega_1,\omega}$, $[\phi]$ is invariant, so $\mu(\phi) = 0$ or 1.

Why restrict attention to sampling measures?

Why restrict attention to sampling measures?

• The zero-one law for $L_{\omega_1,\omega}$ makes them attractive to a logician.

Why restrict attention to sampling measures?

- The zero-one law for $L_{\omega_{1},\omega}$ makes them attractive to a logician.
- They are the extreme points in the space of invariant measures.

Why restrict attention to sampling measures?

- The zero-one law for $L_{\omega_1,\omega}$ makes them attractive to a logician.
- They are the extreme points in the space of invariant measures.
- They arise from convergent sequences of finite structures.

Why restrict attention to sampling measures?

- The zero-one law for $L_{\omega_1,\omega}$ makes them attractive to a logician.
- They are the extreme points in the space of invariant measures.
- They arise from convergent sequences of finite structures.

```
Quantifier-free formulas \rightarrow [0, 1]
```

```
\phi \mapsto \lim_{i \to \infty} p(\phi; A_i)
```

Fact

A finitely additive probability measure on the basic clopen sets of X_{Σ} extends uniquely to a countably additive measure on the Borel sets.

Why restrict attention to sampling measures?

- The zero-one law for $L_{\omega_{1},\omega}$ makes them attractive to a logician.
- They are the extreme points in the space of invariant measures.
- They arise from convergent sequences of finite structures.

```
Quantifier-free formulas \rightarrow [0, 1]
```

```
\phi \mapsto \lim_{i \to \infty} p(\phi; A_i)
```

Fact

A finitely additive probability measure on the basic clopen sets of X_{Σ} extends uniquely to a countably additive measure on the Borel sets.

Theorem (Lovász)

Every sampling measure is induced by some convergent sequence of finite structures.

Alex Kruckman (UC Berkeley)

Theorem (Scott)

For any countable structure M, there is a sentence ϕ_M of $L_{\omega_1,\omega}$ such that $N \models \phi_M$ if and only if $N \cong M$.

If $\mu(\phi_M) = 1$, we say μ concentrates on M.

Theorem (Scott)

For any countable structure M, there is a sentence ϕ_M of $L_{\omega_1,\omega}$ such that $N \models \phi_M$ if and only if $N \cong M$.

If $\mu(\phi_M) = 1$, we say μ concentrates on M.

$$T_{\mu} = \{\phi \text{ a sentence of } L_{\omega_1,\omega} \mid \mu(\phi) = 1\}$$

If μ does not concentrate on any countable structure, then $\neg \phi_M \in T_{\mu}$ for all M, and T_{μ} has no countable models.

Theorem (Scott)

For any countable structure M, there is a sentence ϕ_M of $L_{\omega_1,\omega}$ such that $N \models \phi_M$ if and only if $N \cong M$.

If $\mu(\phi_M) = 1$, we say μ concentrates on M.

$$T_{\mu} = \{\phi \text{ a sentence of } L_{\omega_1,\omega} \mid \mu(\phi) = 1\}$$

If μ does not concentrate on any countable structure, then $\neg \phi_M \in T_{\mu}$ for all M, and T_{μ} has no countable models.

Question (Inconsistency of T_{μ})

Let μ be a sampling measure which does not concentrate on any countable structure. Can T_{μ} have models (of any cardinality)?

Theorem (Scott)

For any countable structure M, there is a sentence ϕ_M of $L_{\omega_1,\omega}$ such that $N \models \phi_M$ if and only if $N \cong M$.

If $\mu(\phi_M) = 1$, we say μ concentrates on M.

$$T_{\mu} = \{\phi \text{ a sentence of } L_{\omega_1,\omega} \mid \mu(\phi) = 1\}$$

If μ does not concentrate on any countable structure, then $\neg \phi_M \in T_{\mu}$ for all M, and T_{μ} has no countable models.

Question (Inconsistency of T_{μ})

Let μ be a sampling measure which does not concentrate on any countable structure. Can T_{μ} have models (of any cardinality)?

Answer: No!

Given a sentence $\psi \in L_{\omega_1,\omega}$,

$$[\psi] = \bigcup_{M \models \psi} [\phi_M]$$

Given a sentence $\psi \in L_{\omega_1,\omega}$,

$$[\psi] = \bigcup_{M \models \psi} [\phi_M]$$

If ψ has only countably many models, and if μ does not concentrate on any of them, then $\mu(\psi)=0.$

Given a sentence $\psi \in L_{\omega_1,\omega}$,

$$[\psi] = \bigcup_{M \models \psi} [\phi_M]$$

If ψ has only countably many models, and if μ does not concentrate on any of them, then $\mu(\psi)=0.$

Question (Vaught's conjecture for sampling measures)

Let μ be a sampling measure which does not concentrate on any countable structure. Is it possible that $\mu(\phi) = 1$ for some sentence ϕ with fewer than continuum many models?

Given a sentence $\psi \in L_{\omega_1,\omega}$,

$$[\psi] = \bigcup_{M \models \psi} [\phi_M]$$

If ψ has only countably many models, and if μ does not concentrate on any of them, then $\mu(\psi)=0.$

Question (Vaught's conjecture for sampling measures)

Let μ be a sampling measure which does not concentrate on any countable structure. Is it possible that $\mu(\phi) = 1$ for some sentence ϕ with fewer than continuum many models?

Answer: No!

A fragment F of $L_{\omega_1,\omega}$ is a set of formulas which is closed under subformula, finite Boolean combinations, quantification, and exchange of free variables (from a fixed countable supply).

A fragment F of $L_{\omega_1,\omega}$ is a set of formulas which is closed under subformula, finite Boolean combinations, quantification, and exchange of free variables (from a fixed countable supply).

A countable set of formulas generates a countable fragment.

A fragment F of $L_{\omega_1,\omega}$ is a set of formulas which is closed under subformula, finite Boolean combinations, quantification, and exchange of free variables (from a fixed countable supply).

A countable set of formulas generates a countable fragment.

Definition

$$p(\overline{x})$$
 is an *F*-type if $p(\overline{x}) = \{\psi(\overline{x}) \in F \mid M \models \psi(\overline{a})\}$ for some tuple \overline{a} in some structure M .

A fragment F of $L_{\omega_1,\omega}$ is a set of formulas which is closed under subformula, finite Boolean combinations, quantification, and exchange of free variables (from a fixed countable supply).

A countable set of formulas generates a countable fragment.

Definition

 $p(\overline{x})$ is an *F*-type if $p(\overline{x}) = \{\psi(\overline{x}) \in F \mid M \models \psi(\overline{a})\}$ for some tuple \overline{a} in some structure M.

If F is countable, and p is an F-type, then $\Phi_p(\overline{x}) = \bigwedge_{\phi \in p} \phi(\overline{x})$ is a formula of $L_{\omega_1,\omega}$. Write $\mu(p)$ as shorthand for $\mu(\Phi_p)$.

Given a sampling measure μ and a countable fragment F, $S^n(F,\mu)$ is the set of positive measure F-types in n free variables.

Given a sampling measure μ and a countable fragment F, $S^n(F,\mu)$ is the set of positive measure F-types in n free variables.

Note: $S^n(F,\mu)$ is at most countable, since $\sum_{p \in S^n(F,\mu)} \mu(p) \leq 1$.

Given a sampling measure μ and a countable fragment F, $S^n(F,\mu)$ is the set of positive measure F-types in n free variables.

Note: $S^n(F,\mu)$ is at most countable, since $\sum_{p \in S^n(F,\mu)} \mu(p) \leq 1$.

For a given sampling measure μ , build a sequence of countable fragments of $L_{\omega_1,\omega}$, $\{F_{\alpha}\}_{\alpha\in\omega_1}$:

 $F_0 =$ the first-order fragment.

 F_{γ} = the fragment generated by $\bigcup_{\alpha < \gamma} F_{\alpha}$, for γ a limit ordinal.

 $F_{\alpha+1} = \text{the fragment generated by } F_{\alpha} \cup \{\Phi_p \mid p \in S^n(F_{\alpha}, \mu), n \in \omega\}.$

Say $p \in S^n(F_\alpha, \mu)$ splits later if for some $\beta > \alpha$, every type $q \in S^n(F_\beta, \mu)$ with $p \subset q$ has $\mu(q) < \mu(p)$.

Say μ stabilizes at γ if for all $n \in \omega$, no type in $S^n(F_{\gamma}, \mu)$ splits later.

Say $p \in S^n(F_\alpha, \mu)$ splits later if for some $\beta > \alpha$, every type $q \in S^n(F_\beta, \mu)$ with $p \subset q$ has $\mu(q) < \mu(p)$.

Say μ stabilizes at γ if for all $n \in \omega$, no type in $S^n(F_{\gamma}, \mu)$ splits later.

Lemma

There is some countable ordinal γ such that μ stabilizes at γ .

Say $p \in S^n(F_\alpha, \mu)$ splits later if for some $\beta > \alpha$, every type $q \in S^n(F_\beta, \mu)$ with $p \subset q$ has $\mu(q) < \mu(p)$.

Say μ stabilizes at γ if for all $n \in \omega$, no type in $S^n(F_{\gamma}, \mu)$ splits later.

Lemma

There is some countable ordinal γ such that μ stabilizes at γ .

Fix $n \in \omega$. For each $\alpha \in \omega_1$, let

$$\begin{aligned} \mathsf{Sp}(\alpha) &= \{ p \in S^n(F_\alpha, \mu) \mid p \text{ splits later} \}, \\ r_\alpha &= \mathsf{sup}\{\mu(p) \mid p \in \mathsf{Sp}(\alpha) \}. \end{aligned}$$

For fixed n,

$$\begin{aligned} \mathsf{Sp}(\alpha) &= \{ p \in S^n(F_\alpha, \mu) \mid p \text{ splits later} \}, \\ r_\alpha &= \sup\{ \mu(p) \mid p \in \mathsf{Sp}(\alpha) \}. \end{aligned}$$

If Sp(α) is nonempty, then there are finitely many types p_1, \ldots, p_n with $\mu(p_i) = r_\alpha$ for all i.

For fixed n,

$$\begin{aligned} \mathsf{Sp}(\alpha) &= \{ p \in S^n(F_\alpha, \mu) \mid p \text{ splits later} \}, \\ r_\alpha &= \sup\{ \mu(p) \mid p \in \mathsf{Sp}(\alpha) \}. \end{aligned}$$

If Sp(α) is nonempty, then there are finitely many types p_1, \ldots, p_n with $\mu(p_i) = r_\alpha$ for all i. (Why? $\sum_{p \in Sp(\alpha)} \mu(p) \le 1$.)

For fixed n,

$$\begin{split} \mathsf{Sp}(\alpha) &= \{ p \in S^n(F_\alpha, \mu) \mid p \text{ splits later} \}, \\ r_\alpha &= \mathsf{sup}\{\mu(p) \mid p \in \mathsf{Sp}(\alpha) \}. \end{split}$$

If $\text{Sp}(\alpha)$ is nonempty, then there are finitely many types p_1, \ldots, p_n with $\mu(p_i) = r_\alpha$ for all *i*. (Why? $\sum_{p \in \text{Sp}(\alpha)} \mu(p) \le 1$.)

So there is some stage $\beta > \alpha$ such that each all the p_i have split before β . All types in $Sp(\beta)$ have measure strictly less than r_{α}^n , so $r_{\beta}^n < r_{\alpha}^n$.

For fixed n,

$$\begin{aligned} \mathsf{Sp}(\alpha) &= \{ p \in S^n(F_\alpha, \mu) \mid p \text{ splits later} \}, \\ r_\alpha &= \mathsf{sup}\{\mu(p) \mid p \in \mathsf{Sp}(\alpha) \}. \end{aligned}$$

If $\text{Sp}(\alpha)$ is nonempty, then there are finitely many types p_1, \ldots, p_n with $\mu(p_i) = r_\alpha$ for all *i*. (Why? $\sum_{p \in \text{Sp}(\alpha)} \mu(p) \le 1$.)

So there is some stage $\beta > \alpha$ such that each all the p_i have split before β . All types in Sp(β) have measure strictly less than r_{α}^n , so $r_{\beta}^n < r_{\alpha}^n$.

If $\operatorname{Sp}(\alpha)$ is nonempty for all α , then there is a strictly decreasing cofinal subsequence of $\langle r_{\alpha}^n \rangle_{\alpha \in \omega_1}$. This is absurd.

For fixed n,

$$\begin{split} \mathsf{Sp}(\alpha) &= \{ p \in S^n(F_\alpha, \mu) \mid p \text{ splits later} \}, \\ r_\alpha &= \mathsf{sup}\{\mu(p) \mid p \in \mathsf{Sp}(\alpha) \}. \end{split}$$

If $\text{Sp}(\alpha)$ is nonempty, then there are finitely many types p_1, \ldots, p_n with $\mu(p_i) = r_\alpha$ for all *i*. (Why? $\sum_{p \in \text{Sp}(\alpha)} \mu(p) \le 1$.)

So there is some stage $\beta > \alpha$ such that each all the p_i have split before β . All types in Sp(β) have measure strictly less than r_{α}^n , so $r_{\beta}^n < r_{\alpha}^n$.

If $\operatorname{Sp}(\alpha)$ is nonempty for all α , then there is a strictly decreasing cofinal subsequence of $\langle r_{\alpha}^n \rangle_{\alpha \in \omega_1}$. This is absurd.

Hence there is some $\gamma_n \in \omega_1$ such that $\operatorname{Sp}(\gamma_n)$ is empty: No type in $S^n(F_{\gamma_n}, \mu)$ splits later. Let $\gamma = \sup_{n < \omega} \{\gamma_n\} \in \omega_1$.

Concentration

Proposition

Let μ be a sampling measure which stabilizes at γ . If for all n, $\sum_{S^n(F_{\gamma},\mu)} \mu(p) = 1$, then μ concentrates on a countable structure.

Concentration

Proposition

Let μ be a sampling measure which stabilizes at γ . If for all n, $\sum_{S^n(F_{\gamma},\mu)} \mu(p) = 1$, then μ concentrates on a countable structure.

For $q \in S^{n+1}(F_{\gamma},\mu)$, the formula $\exists y \Phi_q(\overline{x},y)$ is in $F_{\gamma+1}$, and

$$\sum_{\substack{q \in S^{n+1}(F_{\gamma},\mu)\\p \subset q}} \mu(q) = \mu(p).$$

Concentration

Proposition

Let μ be a sampling measure which stabilizes at γ . If for all n, $\sum_{S^n(F_{\gamma},\mu)} \mu(p) = 1$, then μ concentrates on a countable structure.

For $q \in S^{n+1}(F_{\gamma},\mu)$, the formula $\exists y \Phi_q(\overline{x},y)$ is in $F_{\gamma+1}$, and

$$\sum_{\substack{q \in S^{n+1}(F_{\gamma},\mu)\\p \subset q}} \mu(q) = \mu(p).$$

For each p, μ gives measure 1 to the sentence

$$\forall \overline{x} \, \left(\Phi_p(\overline{x}) \to \left(\forall y \, \bigvee_{\substack{q \in S^{n+1}(F_\gamma, \mu) \\ p \subset q}} \Phi_q(\overline{x}, y) \land \bigwedge_{\substack{q \in S^{n+1}(F_\gamma, \mu) \\ p \subset q}} \exists y \, \Phi_q(\overline{x}, y) \right) \right)$$

Finish by a back-and-forth argument.

Inconsistency of T_{μ}

Corollary

If μ is a sampling measure which does not concentrate on any countable structure, then T_{μ} has no models (of any cardinality).

If μ is a sampling measure which does not concentrate on any countable structure, then T_{μ} has no models (of any cardinality).

Proof.

If μ does not concentrate on a countable structure, then for some $n_{\rm r}$

$$\sum_{p \in S^n(F_\gamma, \mu)} \mu(p) < 1.$$

If μ is a sampling measure which does not concentrate on any countable structure, then T_{μ} has no models (of any cardinality).

Proof.

If μ does not concentrate on a countable structure, then for some $n_{\rm r}$

$$\sum_{\mu \in S^n(F_\gamma,\mu)} \mu(p) < 1.$$

Then $\mu(\bigwedge_{p\in S^n(F_{\gamma},\mu)} \neg \Phi_p(\overline{x})) > 0$, so $\exists \overline{x} \bigwedge_{p\in S^n(F_{\gamma},\mu)} \neg \Phi_p(\overline{x}) \in T_{\mu}$.

p

If μ is a sampling measure which does not concentrate on any countable structure, then T_{μ} has no models (of any cardinality).

Proof.

If μ does not concentrate on a countable structure, then for some $n_{\rm r}$

$$\sum_{\in S^n(F_\gamma,\mu)} \mu(p) < 1.$$

 $\text{Then } \mu(\bigwedge_{p\in S^n(F_\gamma,\mu)}\neg \Phi_p(\overline{x}))>0\text{, so }\exists\overline{x}\bigwedge_{p\in S^n(F_\gamma,\mu)}\neg \Phi_p(\overline{x})\in T_\mu.$

So if T_{μ} has a model M, some \overline{a} from M has F_{γ} -type $q \notin S^{n}(F_{\alpha}, \mu)$. But $\mu(q) = 0$, so $\mu(\exists \overline{x} \Phi_{q}(\overline{x})) = 0$, and $\forall \overline{x} \neg \Phi_{q}(\overline{x}) \in T_{\mu}$, contradiction. \Box

If μ is a sampling measure and ϕ is a sentence of $L_{\omega_1,\omega}$ with fewer than continuum many countable models such that $\mu(\phi) = 1$, then μ concentrates on a model of ϕ .

If μ is a sampling measure and ϕ is a sentence of $L_{\omega_1,\omega}$ with fewer than continuum many countable models such that $\mu(\phi) = 1$, then μ concentrates on a model of ϕ .

If μ is a sampling measure and ϕ is a sentence of $L_{\omega_1,\omega}$ with fewer than continuum many countable models such that $\mu(\phi) = 1$, then μ concentrates on a model of ϕ .

Recall Morley's analysis:

• An F-type p is consistent with ϕ if p is realized in a model of ϕ .

If μ is a sampling measure and ϕ is a sentence of $L_{\omega_1,\omega}$ with fewer than continuum many countable models such that $\mu(\phi) = 1$, then μ concentrates on a model of ϕ .

- An F-type p is consistent with ϕ if p is realized in a model of ϕ .
- $S^n(F,\phi)$ is the set of F-types in n free variables consistent with ϕ .

If μ is a sampling measure and ϕ is a sentence of $L_{\omega_1,\omega}$ with fewer than continuum many countable models such that $\mu(\phi) = 1$, then μ concentrates on a model of ϕ .

- An F-type p is consistent with ϕ if p is realized in a model of ϕ .
- $S^n(F,\phi)$ is the set of F-types in n free variables consistent with ϕ .
- For any countable fragment F, and any n and ϕ , $S^n(F, \phi)$ is an analytic (Σ_1^1) set in 2^F , so if $|S^n(F, \phi)| < 2^{\aleph_0}$, then $|S^n(F, \phi)|$ is countable.

If μ is a sampling measure and ϕ is a sentence of $L_{\omega_1,\omega}$ with fewer than continuum many countable models such that $\mu(\phi) = 1$, then μ concentrates on a model of ϕ .

- An F-type p is consistent with ϕ if p is realized in a model of ϕ .
- $S^n(F,\phi)$ is the set of F-types in n free variables consistent with ϕ .
- For any countable fragment F, and any n and ϕ , $S^n(F, \phi)$ is an analytic (Σ_1^1) set in 2^F , so if $|S^n(F, \phi)| < 2^{\aleph_0}$, then $|S^n(F, \phi)|$ is countable.
- Since a countable structure realizes at most countably many F-types, and our ϕ has fewer than continuum many models, $|S^n(F, \phi)|$ is countable for all countable fragments F and all n.

If μ is a sampling measure and ϕ is a sentence of $L_{\omega_1,\omega}$ with fewer than continuum many countable models such that $\mu(\phi) = 1$, then μ concentrates on a model of ϕ .

Proof.

For any n, $[\phi] = \bigcup_{p \in S^n(F_{\gamma}, \phi)} [\Phi_p]$.

If μ is a sampling measure and ϕ is a sentence of $L_{\omega_1,\omega}$ with fewer than continuum many countable models such that $\mu(\phi) = 1$, then μ concentrates on a model of ϕ .

Proof.

For any $n,\;[\phi]=\bigcup_{p\in S^n(F_\gamma,\phi)}[\Phi_p].$ Omitting the measure 0 types from the sum,

$$\sum_{p \in S^n(F_{\gamma},\mu)} \mu(p) = \mu(\phi) = 1.$$

If μ is a sampling measure and ϕ is a sentence of $L_{\omega_1,\omega}$ with fewer than continuum many countable models such that $\mu(\phi) = 1$, then μ concentrates on a model of ϕ .

Proof.

For any $n,\;[\phi]=\bigcup_{p\in S^n(F_\gamma,\phi)}[\Phi_p].$ Omitting the measure 0 types from the sum,

$$\sum_{p \in S^n(F_{\gamma},\mu)} \mu(p) = \mu(\phi) = 1.$$

By the proposition, μ concentrates on a countable structure, which must be a model of ϕ .

Thank you!