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1. Introduction

The Markov Chain Tree Theorem is a classical result which expresses the stable dis-
tribution of an irreducible Markov matrix in terms of directed spanning trees of its
associated graph. In this article, we present what we believe to be an original elemen-
tary proof of the theorem (Theorem 5.1). Our proof uses only linear algebra and graph
theory, and in particular, it does not rely on probability theory. For this reason, this
article could serve as a pedagogical tool or a gentle introduction to the theory of Markov
matrices for undergraduate computer science and mathematics students.

A version of our proof of the Markov Chain Tree Theorem appeared in John Wicks’
PhD thesis [4]. Other proofs of the Markov Chain Tree Theorem which use probability
theory can be found in Broder [2, Theorem 1], or in more general form in Anantharam
and Tsoucas [1]. The interested reader can find more information on Markov chains,
matrices, and graphs in Kemeny and Snell [3].

In Section 2, we introduce basic facts and terminology that we will need when working
with graphs. In Section 3, we define Markov matrices and provide an algebraic formula
for the stable distribution of a unichain Markov matrix. In Section 4, we discuss directed
trees and prove the existence of directed spanning trees of unichain graphs. In Section 5,
we prove the Markov Chain Tree Theorem by rewriting the algebraic formula for the
stable distribution provided in Section 3 as a sum of weights of directed spanning trees.

2. Graph Theory Basics

A finite directed graph G is a nonempty finite set of vertices, V , together with a set of
edges, E ⊆ V × V . We depict a finite directed graph G = (V,E) by drawing a circle to
represent each vertex v ∈ V and an arrow from the vertex u to the vertex v to represent
each edge (u, v) ∈ E. We say that (u, v) starts at u and ends at v, or that (u, v) is
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outgoing from u and incoming to v. An edge of the form (v, v) from a vertex v to itself
is called a self-loop.

1 2

3 4

Figure 1. A graph

For example, the following figure represents the finite directed graph with vertex set
{1, 2, 3, 4} and edge set {(1, 2), (1, 4), (2, 4), (3, 3), (3, 4), (4, 2)}. This graph has a self-
loop at vertex 3. From now on, we will refer to finite directed graphs simply as graphs.

To any graph G = (V,E), we may associate a weight function d : E → R. In this case,
we call G a weighted graph. We depict a weighted graph by labeling each edge with its
weight.

Given a weighted graph G with weight function d, we define the weight of G to be the
product of the weights of its edges:

||G||d =
∏

(vi,vj)∈E

d(vi, vj).

A walk of length l in a graph G is a sequence of l + 1 vertices (v0, . . . , vl) such that
for each 1 ≤ i ≤ l, there is an edge (vi−1, vi) ∈ E. The length l refers to the number
of edges traversed on the walk. Note that there is always a walk from a vertex to itself,
namely the walk of length 0 consisting of that vertex alone. In the example graph of
Figure 1, (1, 4, 2, 4) is a walk, because (1, 4), (4, 2), and (2, 4) are all edges in the graph.
However, (1, 3, 4) is not a walk, since (1, 3) is not an edge.

We define a binary relation ∼ on V , where u ∼ v if and only if there is a walk from u
to v and a walk from v to u. We would like to show that ∼ is an equivalence relation.
Let u, v, w ∈ V be arbitrary vertices. We have u ∼ u since there is a walk of length 0
from u to itself, so ∼ is reflexive. If u ∼ v, then v ∼ u by definition, so ∼ is symmetric.
If u ∼ v and v ∼ w, we can concatenate the walks from u to v and from v to w to obtain
a walk from u to w. Similarly, we can concatenate the walks from w to v and from v to
u to obtain a walk from w to u. Thus u ∼ w, and ∼ is transitive.

We have established that ∼ is an equivalence relation. This relation partitions V into
equivalence classes, called strongly connected components (SCCs). An SCC is called a
closed class if and only if it has no outgoing edges. Vertices that are do not belong to
a closed class are called transient. The SCCs of the example graph in Figure 1 are {1},
{3}, and {2, 4}. The class {2, 4} is closed, and the vertices 1 and 3 are transient.

The following fundamental lemma shows that every graph contains at least one closed
class. A graph is called unichain if and only if it contains exactly one closed class.
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Lemma 2.1. Starting from any vertex in a graph G, there exists a walk in G that

terminates in a closed class. In particular, every graph contains at least one closed class.

Proof. Let v be a vertex of G, and let C1 be its SCC. If C1 is closed, then we have a walk
(of length 0) starting at v and terminating in a closed class, and we are done. Otherwise,
C1 has an outgoing edge to some other SCC C2, say (u1, v2), with u1 ∈ C1 and v2 ∈ C2.
Now since v and u1 are in the same SCC, there is a walk from v to u1, and continuing
along the edge (u1, v2), there is a walk from v terminating in C2.

G

C1

v

u1

C2

v2

u2

C3

v3

Cn

vn

Figure 2. Constructing a walk to a closed class

We now repeat the process starting with v2. If C2 is closed, we have constructed a
walk from v terminating in a closed class. Otherwise, there is a walk starting from v2
to a vertex v3 in another SCC, C3. Concatenating these walks, there is a walk from v
terminating in C3.

In this way we begin constructing a sequence of SCCs, C1, C2, C3, . . ., such that for all
i > 1, Ci−1 6= Ci, and for all j ≥ i, there is a walk from vi ∈ Ci terminating in Cj . Since
the number of closed classes is finite, we must eventually arrive at either a closed class,
in which case we are done, or an SCC which has already been visited. We will show that
the latter case is impossible.

Suppose we have the sequence C1, C2, . . . , Cn, where Cn = Ci for some i < n− 1. Then
there is a walk from the vertex vi in Ci to the vertex vi+1 in Ci+1. But there is also a
walk from vi+1 to the vertex vn in Cn. Since Cn = Ci, there is a walk from vn to vi, and
thus there is a walk from vi+1 to vi. So vi ∼ vi+1, contradicting the fact that Ci 6= Ci+1.

Thus, we can construct a walk from any vertex v that terminates in a closed class. In
particular, this shows that G has at least one closed class. �
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3. Markov Matrices

We will work with n × n square matrices with real-valued entries. For convenience,
we will work with a fixed n for the entire article. For such a matrix M , we write Mi,j to
refer to the element in the ith row and jth column of M .

A matrix M is called Markov if and only if all its entries are non-negative and all its
columns sum to 1.

Markov matrices are often used to represent discrete random processes, as follows.
Consider a system which may at any time be in one of n states, and suppose that at
each of a series of discrete time steps, the system transitions randomly to another state.
If the probability of transitioning to state j depends only on the current state i, then we
can encode these probabilities as a Markov matrixM by settingMj,i to be the probability
of transitioning from state i to state j. Since the total probability of transitioning from
state i to any other state must be 1, the columns of M sum to 1.

To every Markov matrix M , we associate a weighted graph G(M) = (Vn, E) with n
vertices. As a convention, we will take as the vertex set Vn = {1, 2, . . . , n}. Then for all
i, j ∈ Vn, (i, j) ∈ E if and only if Mj,i > 0. We define a weight function d : E → R by
d(i, j) = Mj,i.

In the graph G(M) associated to M , each vertex represents a state in the discrete ran-
dom process, and the weight of an edge (i, j) represents the probability of transitioning
from state i to state j.
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Figure 3. A Markov matrix and its graph

Note that for all i, the weights of the outgoing edges from vertex i correspond to the
matrix entries in the ith column. Thus the weight of every edge is positive, and the sum
of the weights of the outgoing edges from each vertex is 1.
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We call a Markov matrix unichain1 if and only if its corresponding graph is unichain,
that is, if it has exactly one closed class. The matrix in Figure 3 is unichain, since its
graph has only one SCC, {1, 2, 3, 4}, which necessarily is a closed class.

A vector in R
n is called a distribution if and only if all its entries are non-negative

and its entries sum to 1. A distribution v can be used to represent the probability
distribution across states at a given time. That is, the ith entry vi is the probability
that the system is in state i at that time. Multiplying v by M results in the probability
distribution across states at the next time step.

We are interested in stable distributions, which are fixed by multiplication by M (that
is, Mv = v). These are eigenvectors with eigenvalue 1. A stable distribution represents
a possible limiting behavior of the discrete random process.

Given a Markov matrix, M , the space of eigenvalues with eigenvector 1 is the kernel
of M − I, since Mv = v if and only if (M − I)v = Mv − v = 0. Let Λ = M − I. This
matrix Λ is called the laplacian of M . Note that since the columns of M sum to 1, the
columns of Λ sum to 0.

In the example of Figure 3, the laplacian of the given Markov matrix M is

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We claim that v = (1
3
, 2
5
, 1
6
, 1
10
) is a stable distribution of M . Multiplying, we see that
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





,

so v is an eigenvector of M with eigenvalue 1. Moreover, 1
3
+ 2

5
+ 1

6
+ 1

10
= 1, and all

entries are positive, so v is a stable distribution.
The following fact is a slight generalization of a well known result, namely that every

Markov matrix has a stable vector. For a proof, see for example Wicks [4] Theorem 5.14.

Theorem 3.1. If M is a Markov matrix whose graph G(M) has k closed classes, then

dim(ker(M − I)) = k. That is, the space of stable vectors of M has dimension k.

In particular, the space of stable vectors of a unichain Markov matrixM has dimension
1. We will show that there is a simple way of describing the space of stable vectors by
way of the adjugate2 matrix of M .

Given a matrix A, the minor Mii,j(A) is the matrix formed from A by deleting row i
and column j. We define the cofactor Coi,j(A) = (−1)i+j |Mii,j(A)|. For example, if we
have

1A Markov matrix is called irreducible if its corresponding graph has only one strongly connected
component. Irreducibility is a stronger condition, since all irreducible Markov matrices are unichain,
and the Markov chain tree theorem is often stated for the irreducible case.

2The adjugate matrix is also known as the classical adjoint matrix
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A =





1 2 3
4 5 6
7 8 9



 , Mi1,2(A) =

(

4 6
7 9

)

, andCo1,2(A) = (−1)3
∣

∣

∣

∣

4 6
7 9

∣

∣

∣

∣

= 6.

Before continuing, we will pause briefly to remind the reader of a few elementary
properties of the determinant, which will be useful later.

Theorem 3.2. The determinant of a matrix M can be calculated by the following for-

mula. If M is a 1 × 1 matrix, its determinant is the single entry. Otherwise, for any

row i or column j,

|M | =
n
∑

k=1

Mi,kCo
i,k(A) =

n
∑

k=1

Mk,jCo
k,j(A).

Note that this formula is recursive, since the cofactor is defined in terms of a deter-

minant. If the columns of M are the vectors v1, . . . , vn, we will sometimes write |M | as
det(v1, . . . , vn).

The determinant satisfies the following properties:

• The determinant is multilinear in the rows and columns of M . For any i,
det(v1, . . . , a(vi+ v′i), . . . , vn) = a(det(v1, . . . , vi, . . . , vn)+det(v1, . . . , v

′
i, . . . , vn));

that is, the determinant is linear in the ith column, and similarly, the determinant

is linear in the jth row for any j.
• M is invertible if and only if |M | 6= 0 if and only if the nullspace of M is not

empty.

• If any two rows or any two columns of M are the equal, then |M | = 0.
• The determinant is unaffected by permutations. That is, given some permutation

σ of the indices {1, . . . , n}, let σ(M) be the result of reordering the rows and

columns of M so that the elements of the ith row are now in the σ(i)th row, and

the same holds for columns. Then |σ(M)| = |M |.
• The determinant of an upper-triangular matrix is the product of the diagonal

entries. The determinant of a block upper-triangular matrix is the product of the

determinants of the diagonal blocks.

The adjugate matrix adj(A) is defined by (adj(A))i,j = Coj,i(A). In the example
above,

adj(M) =





−3 6 −3
6 −12 6
−3 6 −3



 .

The entry (adj(A))2,1 is Co1,2(A) = 6, as we computed above.
We recall the following fact from linear algebra.

Lemma 3.3. For any n× n matrix, A,

A adj(A) = adj(A)A =









|A| 0 · · · 0
0 |A| · · · 0
...

...
. . .

...

0 0 · · · |A|









.
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Proof. We will compute (A adj(A))i,j . If i = j, we have

(A adj(A))i,j =

n
∑

k=1

Ai,k(adj(A))k,j

=

n
∑

k=1

Ai,k(Co
j,k(A))

=

n
∑

k=1

Ai,k(Co
i,k(A))

= |A|,

by the usual formula for the determinant expanded along row i.
On the other hand, if i 6= j, let A be the matrix obtained by replacing the jth row of

A with a copy of the ith row. Since two rows of A are equal, |A| = 0.
Now computing the determinant along row j, |A| =

∑n

k=1Aj,kCo
j,k(A). But Aj,k =

Ai,k, and since the jth row of A is deleted when computing Coj,k(A), Coj,k(A) =

Coj,k(A) = (adj(A))k,j. So 0 = |A| =
∑n

k=1Ai,k(adj(A))k,j = (A adj(A))i,j.
These computations show that A adj(A) is |A| along the diagonal and 0 elsewhere, as

required. The same argument holds for adj(A)A, except that we expand the determinant
formula along columns instead of rows. �

Theorem 3.4. Given a unichain Markov matrix M with laplacian Λ = M−I, the vector
vM whose entries are the diagonal entries of the adjugate of Λ, (vM)i = (adj(Λ))i,i, is a

stable vector of M . That is, MvM = vM .

Proof. Consider Λadj(Λ). By Lemma 3.3, the off-diagonal entries of the product are 0,
and the diagonal entries are |Λ|. But by Theorem 3.1, dim(ker(Λ)) = 1, so |Λ| = 0.
Thus the product is the zero matrix, and every column of adj(Λ) is in ker(Λ).

The columns of Λ sum to 0, so the rows of ΛT sum to 0, and thus

ΛT





1
...
1



 =





0
...
0



 ,

so letting J be the vector consisting of all 1s, J ∈ ker(ΛT ). But since Λ is a square
matrix, dim(ker(ΛT )) = dim(ker(Λ)) = 1, so every vector in ker(ΛT ) is a multiple of J .

Now consider adj(Λ)Λ. Again, this product is the zero matrix, so (adj(Λ)Λ)T =
ΛTadj(Λ)T = 0, and every column of adj(Λ)T is in ker(ΛT ). Thus every column of
adj(Λ)T is a multiple of J , so each row of adj(Λ)T contains only a single value.

But this means that all column vectors of adj(Λ) are equal, and they are all equal to
the vector vM given by the diagonal entries. Thus vM ∈ ker(Λ), so vM is a stable vector
of M . �

As an example of this theorem, consider the Markov matrix
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M =





0 0 2
3

1 1
2

1
3

0 1
2

0





with

Λ =





−1 0 2
3

1 −1
2

1
3

0 1
2

−1



 , and adj(Λ) =





1
3

1
3

1
3

1 1 1
1
2

1
2

1
2



 .

Note that the columns of adj(Λ) are all the same. The vector vM of diagonal entries
is (1

3
, 1, 1

2
), and indeed, we have

MvM =





0 0 2
3

1 1
2

1
3

0 1
2

0









1
3
1
1
2



 =





1
3
1
1
2



 = vM ,

so vM is a stable vector of M .
The Markov Chain Tree Theorem will give us an alternate way of calculating a stable

vector of M from the graph G(M). We will prove the theorem by showing that the result
of this calculation is a multiple of the vector vM of diagonal entries of the laplacian.

4. Directed Trees

A graph G = (V,E) is called a directed tree rooted at v ∈ V if and only if G contains
a unique walk from each vertex in V to v. The next theorem is a useful alternate
characterization of directed trees.

Theorem 4.1. A graph G = (V,E) is a directed tree rooted at v ∈ V if and only if

(1) v has no outgoing edges, while every u ∈ V \ {v} has exactly one outgoing edge,

and

(2) G does not contain any cycles.

Proof. Let G be a directed tree rooted at v. Suppose G contains a cycle which starts
and ends at some vertex u ∈ V . There exists a walk from u to v, but we can construct
a distinct walk from u to v by following the cycle from u back to itself, then taking the
original walk from u to v. This contradicts the uniqueness of the walk, so G contains no
cycles.

If v had an outgoing edge (v, u), then the walk consisting of this edge followed by the
unique walk from u to v would constitute a cycle starting and ending at v. But we have
already established that G contains no cycles, so v has no outgoing edges.

Let u be a vertex other than v. There is a walk from u to v, so u has at least one
outgoing edge. Suppose u had two outgoing edges, (u, w1) and (u, w2). Concatenating
these edges to the walks from w1 to v and from w2 to v respectively, we could construct
two distinct walks from u to v. Thus, u has exactly one outgoing edge.

Conversely, let G be a graph containing no cycles, in which one vertex, v, has no
outgoing edges, while every u ∈ V \ {v} has exactly one outgoing edge. The SCCs of G
each contain exactly one vertex, since if there were a pair of vertices u ∼ w in an SCC,
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there would a cycle containing them both made up of the walk from u to w concatenated
to the walk from w to u.

Since every vertex but v possesses an outgoing edge, G is unichain with unique closed
class, {v}. By Lemma 2.1, for any vertex u ∈ V \ {v}, G contains a walk from u to v. If
there were more than one such walk, the first vertex at which the walks diverged would
have two outgoing edges, contradicting our assumption. Thus, the walk is unique, and
G is a directed tree rooted at v. �

The two properties in the statement of Theorem 4.1 give rise two two sets of graphs
which will be of interest to us. Fix n > 0, the number of vertices, and consider the
vertex set Vn = {1, 2, . . . , n}.

We will denote by Di the set of graphs with vertex set Vn which have property 1 for
the vertex vi. That is, vi has no outgoing edges, while every other vertex vj has exactly
one outgoing edge.

We will denote by Ti the subset of Di consisting of graphs which also have property 2:
they contain no cycles. Theorem 4.1 tells us that Ti is exactly the set of directed trees
with vertex set Vn rooted at vi.

For now we will work in Di for greater generality. Let D = (Vn, E) ∈ Di. Each vertex
other than vi has exactly one outgoing edge, so we can define a function which describes
E completely. Let map(D) : Vn \ {i} → Vn be the function map(D)(j) = k if (j, k) ∈ E.

Similarly, to any D = (Vn, E) ∈ Di, we can associate an n × n matrix mat(D),
defined by mat(D)k,j = 1 if (j, k) ∈ E and mat(D)j,k = 0 otherwise. Note that for
j 6= i, if map(D)(j) = k, then the jth column of mat(D) is the kth standard basis
vector ek. The ith column is the zero vector. Thus if σ = map(D), then mat(D) =
(eσ(1), . . . , 0, . . . , eσ(n)).

Suppose d : E → R is a weight function on the edge set of a graph D ∈ Di. Since
there is a unique edge out of j for j 6= i, letting σ = map(D), we can express the weight
of D in terms of σ in the following way:

||D||d =
∏

(j,k)∈E

d(j, k) =
∏

j 6=i

d(j, σ(j)).

IfM is an n×nmatrix, we define a weight function dM onD by letting dM(j, k) = Mk,j.
We have

||D||dM =
∏

(j,k)∈E

Mk,j =
∏

j 6=i

Mσ(j),j .

Lemma 4.2. Let M be a Markov matrix, and let D ∈ Di. Then ||D||dM 6= 0 if and only

if D is a subgraph of G(M).

Proof. By the definition of the Markov graph G(M), an edge (j, k) is in G(M) if and
only if the corresponding matrix entry Mk,j is nonzero. Thus, if an edge (j, k) in the
graph D is also an edge in the graph G(M) associated to M , then dM(j, k) = Mk,j > 0.
Otherwise, dM(j, k) = Mk,j = 0. Hence the product ||D||dM is nonzero if and only if
every edge in E is also an edge in G(M). �
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Now we turn out attention to directed trees. Given a graph G = (V,E), a directed

spanning tree (DST) of G is a directed tree T = (VT , ET ) such that VT = V and ET ⊆ E.
That is, T is a subgraph which spans all vertices of G.

We know from Lemma 2.1 that every graph contains at least one closed class. Our
goal is to show that if a graph contains exactly one closed class, that is, if it is unichain,
then it contains DSTs rooted at each of the vertices in that class.

Theorem 4.3. A graph G contains a DST rooted at a vertex v if and only if G is

unichain and v is in its closed class

Proof. Let G = (V,E) be a graph which contains some DST rooted at v ∈ V . Then for
every vertex u ∈ V , there is a walk from u to v in G. By Lemma 2.1, G contains at least
one closed class C. We must have v ∈ C, for if not, there would be no walk from w ∈ C
to v since C has no outgoing edges. Suppose G contains another closed class, C′. By the
same argument, v ∈ C′, so C = C′. Thus G is unichain.

Conversely, suppose G = (V,E) is unichain with closed class C, and v ∈ C. Then
by Lemma 2.1, for any vertex u ∈ V , there is a walk from u which terminates at some
vertex w ∈ C. Since v ∈ C, there is a walk from w to v, so, concatenating these, there
is a walk from u to v. Thus we can define a function lv : V → N such that l(u) is the
minimum length over all walks from u to v.

We will construct a DST, T , of G by selecting one outgoing edge for each vertex u ∈
V \ {v}, then demonstrating that T contains no cycles. Consider {(u, w1), . . . , (u, wd)},
the set of edges in E outgoing from u. From this set, there must be at least one (u, wi)
such that lv(wi) = lv(u)−1. In particular, the first edge along any minimum length walk
from u to v will have this property. Select this edge, and let ET be the set of the edges
selected in this way for each vertex u 6= v. Let T = (V,ET ).

Now the value of lv decreases by one along each edge in ET . Suppose that there is a
cycle of lengthm ≥ 1 in T , (u0, u1, . . . , um) with um = u0. Since lv decreases by one along
each edge of the cycle, we have lv(ui) = lv(u0)−i. But then lv(u0) = lv(um) = lv(u0)−m,
a contradiction. Thus T is a graph containing no cycles, in which one vertex, v, has no
outgoing edges, while every u ∈ V \ {v} has exactly one outgoing edge, so by Theorem
4.1, T is a DST of G. �

5. A Proof of the Markov Chain Tree Theorem

For a unichain Markov matrix M , the Markov Chain Tree Theorem is concerned with
the sum of the weights of all DSTs of G(M) rooted at a vertex i. We will define a vector
wM whose ith component is this quantity. That is, (wM)i =

∑

T ||T ||dM where the sum
is taken over all T ∈ Ti which are DSTs of G(M).

Theorem 5.1 (Markov Chain Tree Theorem). If M is a unichain Markov matrix, with

wM defined as above, then wM is a stable vector of M , and there exists a normalizing

factor c ∈ R such that c(wM) is the unique stable distribution of M .

Our plan is to relate the vector wM to the vector vM , which we defined in Section 3
to be the diagonal entries of adj(Λ). Since we proved in Theorem 3.4 that vM is a stable
vector of M , the Markov Chain Tree Theorem will follow.
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We will need a simple lemma describing the diagonal entries of the adjugate matrix.
For any n×n matrix A, we will denote by Ri(A) the matrix formed by replacing the ith

column of A by the ith standard basis vector, ei.

Lemma 5.2. Given an n× n matrix A, for all i, (adj(A))i,i = |Ri(A)|.

Proof. Computing the determinant along the ith column, we have

|Ri(A)| =
n
∑

k=1

(Ri(A))k,iCo
k,i(Ri(A))

=
n
∑

k=1

(ei)kCo
k,i(Ri(A)).

Since ei is 1 in the ith component and 0 elsewhere, all terms in the sum drop out except
k = i. Then |Ri(A)| = Coi,i(Ri(A)). Now Coi,i(Ri(A)) = Coi,i(A), since we remove the
ith column when calculating the cofactor. Hence |Ri(A)| = Coi,i(A) = (adj(A))i,i. �

The first lemma shows that vM can be computed in terms of weights of graphs. The
proof of the lemma is followed by an example, which the reader may find enlightening.

Lemma 5.3. For M a unichain Markov matrix with laplacian Λ = M − I, if vM is the

vector consisting of the diagonal entries of adj(Λ), then

(vM)i =
∑

D∈Di

||D||dM |Ri(mat(D)− I))|

Proof. By definition, (vM)i = (adj(Λ))i,i = |Ri(Λ)| by Lemma 5.2.
Consider the jth column of Λ, λj = (Λ1,j, . . . ,Λn,j). Since Λ is a laplacian, each

column sums to 0. So we can write Λj,j = −
∑

k 6=j Λk,j. Let ek,l = ek − el. If k 6= l, this

is the vector which is 1 in its kth coordinate, −1 in its lth coordinate, and 0 elsewhere,
and ek,k is the zero vector. Then we can write λj = (Λ1,j, . . . ,−

∑

k 6=j Λk,j, . . . ,Λn,j) =
∑

k 6=j Λk,jek,j =
∑n

k=1Mk,jek,j. We can change the entries to entries of M because M
and Λ agree off of the diagonal, and every entry on the diagonal, Mj,j, is multiplied by
the zero vector ej,j.

We will use this expression for the columns of Λ to compute the determinant of Ri(Λ).
By the multilinearity of the determinant,

|Ri(Λ)| = det(λ1, . . . , ei, . . . , λn)

= det

(

∑

k1

Mk1,1ek1,1, . . . , ei, . . . ,
∑

kn

Mn,knekn,n

)

=
∑

k1

. . .
∑

kn

det(Mk1,1ek1,1, . . . , ei, . . . ,Mkn,nekn,n)

=
∑

k1

. . .
∑

kn

∏

j 6=i

Mki,i det(ek1,1, . . . , ei, . . . , ekn,n)

=
∑

σ

∏

j 6=i

Mσ(j),j det(eσ(1),1, . . . , ei, . . . , eσ(n),n),
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where each σ represents a choice of values for each of the kj, σ(j) = kj . Since there is no
ki (the i

th column is just ei and is not expressed as a sum), σ is a function which assigns
to each j 6= i a value 1 ≤ σ(j) ≤ n.

The key observation is that these σ are in bijection with the graphs D ∈ Di. That is,
each σ = map(D) for some D ∈ Di. The property of assigning a value to each j 6= i is
equivalent to having an edge out of the vertex j for all j 6= i.

Thus we can reinterpret the sum over σ as a sum over D ∈ Di. Given σ = map(D),
the product

∏

j 6=iMσ(j),j is exactly our expression for ||D||dM . Consider mat(D) =

(eσ(1), . . . , 0, . . . , eσ(n)), where the 0 is the ith column. Then mat(D) − I = (eσ(1) −
e1, . . . ,−ei, . . . , eσ(n) − en). Finally, Ri(mat(D) − I) = (eσ(1),1, . . . , ei, . . . , eσ(n),1). But
this is exactly the matrix whose determinant we take in the sum.

So |Ri(Λ)| =
∑

D∈Di
||D||dM |Ri(mat(D)− I)|, as was to be shown. �
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Figure 4. A running example

We will now pause to give an example, using the Markov matrix M in Figure 4.
In Section 3, we calculated the stable distribution vM = (1

3
, 1, 1

2
) for M by taking the

diagonal entries of the adjugate matrix adj(Λ).
We will follow the proof of Lemma 5.3 to write the first entry of vM in terms of the

weights of graphs in D1.



AN ELEMENTARY PROOF OF THE MARKOV CHAIN TREE THEOREM 13

(vM)1 = Co1,1(Λ)

= |Ri(Λ)|

=
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∣
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Figure 5. D1 on three vertices

There are nine graphs inD1 on three vertices (see Figure 5). Taking any of the matrices
associated to these graphs, if we subtract the identity and replace the first column with
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the first standard basis vector, we get a matrix which appears in the expression for (vM )1
obtained above.

For example,

|R1(mat(D1)− I)| =

∣

∣

∣

∣

∣

∣

R1





−1 1 1
0 −1 0
0 0 −1





∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 1 1
0 −1 0
0 0 −1

∣

∣

∣

∣

∣

∣

,

which is the first determinant appearing in the expression. The coefficient of this deter-
minant is the product of the weights of the edges (2, 1) and (3, 1) in D1 given by M1,2

and M1,3, 0 ·
2
3
.

Examining the matrices in Figure 5 and the corresponding determinants in the ex-
pression for (vM)1, we can check that for those j such that Dj is a directed tree,
|R1(mat(Dj)−I)| = 1, and for those j such thatDj contains a cycle, |R1(mat(Dj)−I)| =
0. The directed trees are D1, D2, and D7. The others all contain cycles.

Thus the the terms in the expression for (vM)i corresponding to graphs which are not
directed trees drop out. Of the remaining terms, each has a coefficient which is ||Dj||dM ,
the weight of Dj in M . But by Lemma 4.2, ||Dj||dM is nonzero if and only if Dj is a
subgraph of G(M). So the terms which do not correspond to DSTs of G(M) also drop
out. In our example, D1 and D2 contain the edge (2, 1) which is not an edge in G(M),
so they drop out.

We are left with a sum over the weights of the DSTs of G(M), which is exactly the
expression for (wM)i. In our example, we are left with the weight of D7, which is 1

3
.

Our second lemma is the key step that the the determinant of R1(mat(Dj)−I) is zero
when Dj is not a directed tree. It gives a simple expression for the term |Ri(mat(D)−I)|
in the formula for (vM)i given in Lemma 5.3.

Lemma 5.4. For D ∈ Di,

|Ri(mat(D)− I)| =

{

(−1)n−1 if D ∈ Ti, i.e. D contains no cycles

0 otherwise, i.e. D contains a cycle

Proof. Suppose D ∈ Ti. Then D has no cycles, so in particular D has no self-loops, and
each diagonal entry (except the ith) of Ri(mat(D)− I) is −1. The ith diagonal entry is
a 1, since the ith column is the standard basis vector ei.

Now D is a directed tree, so there is a length function lD : Vn → N on the vertices,
where lD(j) is the length of the unique walk from j to i. Sort the vertices according
to lD and call the resulting permutation σ. If lD(j) < lD(k), j comes before k in the
sorting, and σ(j) < σ(k). Then permute the vertices of Ri(mat(D) − I) according to
σ. Let N be the resulting matrix. Since determinant is preserved under permutation,
|N | = |Ri(mat(D)− I)|.

Now all the nonzero off-diagonal entries of Ri(mat(D)− I) represent edges in D, and
for an edge (j, k) in D, we must have lD(k) < lD(j). Thus σ(k) < σ(j). Now the 1,
which was in the kth row and jth column, is in the σ(k)th row and σ(j)th column in N ,
and thus is above the diagonal.

Since diagonal entries of a matrix remain on the diagonal after permutation, and all off-
diagonal entries of Ri(mat(D)− I) are placed above the diagonal, N is upper triangular
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with −1 in all diagonal positions but one. The determinant of an upper triangular matrix
is the product of its diagonal entries, so |Ri(mat(D)− I)| = |N | = (−1)n−1.

Now suppose D /∈ Ti. Then D contains a cycle. The vertex i is a closed class of D,
since it has no outgoing edges. But also the cycle is a closed class, since each vertex in
the cycle has exactly one outgoing edge, which goes to the next vertex in the cycle.

Let c be the number of vertices in the cycle. Permute mat(D) by a permutation σ
such that i is sent to 1, the vertices in the cycle are sent to 2, . . . , c+ 1, and the rest of
the vertices are sent to c + 2, . . . , n. The result is:

σ(mat(D)) =





0 0 ∗
0 C ∗
0 0 D



 ,

where C is the square submatrix consisting of rows and columns 2 through c+1 and D is
the square submatrix consisting of rows and columns c+2 through n. The first column is
all 0s because i has no outgoing edges, and the entries above and below C are 0s because
the cycle has no edges outgoing from the cycle. The contents of the submatrices labeled
* do not concern us.

Now |Ri(mat(D) − I)| = |σ(Ri(mat(D) − I))| = |R1(σ(mat(D)) − I)|, because de-
terminant is preserved under permutation, and under the permutation σ, the standard
basis vector ei in the ith column becomes the standard basis vector e1 in the 1st column.
Now,

R1(σ(mat(D))− I) =





1 0 ∗
0 C − I ∗
0 0 D − I



 ,

the determinant of which is |C − I||D − I|, since the determinant of a block diagonal
matrix is the product of the determinants of the diagonal blocks.

Notice that every vertex in the cycle has one outgoing edge to another vertex in the
cycle, and thus each column of C has exactly one nonzero entry, which is 1. Thus the
columns of C all sum to 1, and C is a Markov matrix. So C − I is its laplacian, and we
have seen (Theorem 3.1) that the laplacian of a Markov matrix always has determinant
0. Thus |Ri(mat(D)− I)| = |C − I||D − I| = 0. �

We are now prepared to prove the Markov Chain Tree Theorem.

Proof of Theorem 5.1. Putting Lemma 5.3 and Lemma 5.4 together, we have

(vM)i =
∑

D∈Di

||D||dM |Ri(mat(D)− I)|

=
∑

D∈Ti

||D||dM (−1)n−1 +
∑

D∈Di\Ti

||D||dM · 0

= (−1)n−1
∑

D∈Ti

||D||dM .

Now by Lemma 4.2, ||D||dM is nonzero if and only if D is a DST of G(M). Thus
the terms corresponding to trees which are not DSTs drop out, and we are left with
(−1)n−1

∑

T ||T ||dM , where the sum is taken over all T ∈ Ti which are DSTs of G(M).
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This is (−1)n−1(wM)i by definition, so wM = (−1)n−1vM . Since wM is a scalar multiple
of vM , and vM is a stable vector of M by Theorem 3.4, wM is a stable vector of M .

Now we will show that we can normalize wM to obtain a stable distribution of M . By
the definition of wM , the entries of wM are sums of weights of DSTs, which are products
of positive edge weights, so the each entry is positive unless the corresponding sum is
empty. Since M is unichain, it has a DST rooted at some vertex i in the closed class by
Theorem 4.3. Then the sum (wM)i is nonempty, so (wM)i > 0, and wM 6= 0. Hence wM

is a nonzero vector made up of non-negative entries.

Let c =
n
∑

i=1

(wM)i, and let wM =
wM

c
. Since c > 0, (wM)i =

(wM)i
c

≥ 0, and

n
∑

i=1

(wM)i =
n
∑

i=1

(wM)i
c

=

∑n

i=1(wM)i
c

= 1. So (wM)i is a distribution. Furthermore, wM

is a scalar multiple of the stable vector wM , so it is a stable distribution. �
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