Generic theories, independence, and NSOP₁

Alex Kruckman

Indiana University, Bloomington

Mid-Atlantic Mathematical Logic Seminar Wesleyan University October 21, 2017

Outline

- Background:
 - Forking independence and simple theories
 - Kim independence and NSOP₁ theories
- New NSOP₁ examples:
 - Generic *L*-structures
 - Generic projective planes
- Preservation results:
 - Generic expansions
 - Generic Skolemizations

This is recent joint work:

- Alex Kruckman and Nicholas Ramsey, Generic expansion and Skolemization in NSOP₁ theories, arXiv:1706.06616, June 2017.
- Gabriel Conant and Alex Kruckman, *Independence in generic incidence structures*, arXiv:1709.09626, September 2017.

Notions of independence

A major theme in model theory is the identification of abstract notions of independence in models of first-order theories.

Notions of independence

A major theme in model theory is the identification of abstract notions of independence in models of first-order theories.

Fix a complete first-order theory T and a large highly saturated and homogeneous "monster model" $\mathbb{M} \models T$. By convention:

- All small models are elementary substructures $M \prec M$.
- All small tuples b are tuples from \mathbb{M} .
- All small sets are subsets of M.

Small means size at most κ , where M is κ^+ -saturated.

Notions of independence

A major theme in model theory is the identification of abstract notions of independence in models of first-order theories.

Fix a complete first-order theory T and a large highly saturated and homogeneous "monster model" $\mathbb{M} \models T$. By convention:

- All small models are elementary substructures $M \prec M$.
- All small tuples b are tuples from \mathbb{M} .
- All small sets are subsets of M.

Small means size at most κ , where \mathbb{M} is κ^+ -saturated.

A "notion of independence" is presented as a ternary relation \bigcup on subsets of \mathbb{M} . For any small sets A,B,C, we read

 $A \underset{C}{\bigcup} B$ as "A is independent from B over C".

Algebraic independence (\downarrow^a)

The most basic notion of independence is algebraic independence.

Definition

A formula $\varphi(x;a)$ is algebraic if it has only finitely many solutions. The algebraic closure of A, $\operatorname{acl}(A)$, is the set of all elements $b \in \mathbb{M}$ which satisfy some algebraic formula with parameters from A.

$$\mathsf{Define}\ A \mathrel{\mathop{\downarrow}^a}_C B \iff \operatorname{acl}(AC) \cap \operatorname{acl}(BC) = \operatorname{acl}(C).$$

Algebraic independence (\downarrow^a)

The most basic notion of independence is algebraic independence.

Definition

A formula $\varphi(x;a)$ is algebraic if it has only finitely many solutions. The algebraic closure of A, $\operatorname{acl}(A)$, is the set of all elements $b \in \mathbb{M}$ which satisfy some algebraic formula with parameters from A.

Define
$$A \downarrow^a_C B \iff \operatorname{acl}(AC) \cap \operatorname{acl}(BC) = \operatorname{acl}(C)$$
.

In any theory, \bigcup^a always satisfies some basic properties:

- Invariance: If $A \downarrow^a_C B$ and $A'B'C' \equiv ABC$, then $A' \downarrow^a_{C'} B'$.
- Symmetry: If $A \stackrel{a}{\bigcup}_{C} B$, then $B \stackrel{a}{\bigcup}_{C} A$.
- Monotonicity: If $A' \subseteq A$, $B' \subseteq B$, and $A \stackrel{a}{\bigcup}_{C} B$, then $A' \stackrel{a}{\bigcup}_{C} B'$.
- Existence: $A \downarrow_C^a C$.
- Extension: If $A \downarrow_C^a B$, and $B \subseteq B'$, then there exists $A' \equiv_{BC} A$ such that $A' \downarrow_C^a B'$.

Dividing independence (\bigcup^d) and forking independence (\bigcup^f)

Definition (Shelah)

A formula $\varphi(x;b)$ divides over C if there is a C-indiscernible sequence $(b_i)_{i\in\omega}$ with $b_0=b$ such that $\{\varphi(x;b_i)\mid i\in\omega\}$ is inconsistent.

Define $A \downarrow_C^d B \iff$ no formula in $\operatorname{tp}(A/BC)$ divides over C.

Dividing independence (\bigcup^d) and forking independence (\bigcup^f)

Definition (Shelah)

A formula $\varphi(x;b)$ divides over C if there is a C-indiscernible sequence $(b_i)_{i\in\omega}$ with $b_0=b$ such that $\{\varphi(x;b_i)\mid i\in\omega\}$ is inconsistent.

Define $A \downarrow_C^d B \iff$ no formula in $\operatorname{tp}(A/BC)$ divides over C.

 \bigcup^d may not satisfy extension. This motivates the following definition:

Definition (Shelah)

A formula $\varphi(x;b)$ forks over C if it implies a disjunction $\bigvee_{i=1}^n \psi_i(x;b_i)$ such that each formula $\psi_i(x;b_i)$ divides over C.

Define $A \downarrow_C^f B \iff$ no formula in $\operatorname{tp}(A/BC)$ forks over C.

Dividing independence (\bigcup^d) and forking independence (\bigcup^f)

Definition (Shelah)

A formula $\varphi(x;b)$ divides over C if there is a C-indiscernible sequence $(b_i)_{i\in\omega}$ with $b_0=b$ such that $\{\varphi(x;b_i)\mid i\in\omega\}$ is inconsistent.

 \bigcup^d may not satisfy extension. This motivates the following definition:

Definition (Shelah)

A formula $\varphi(x;b)$ forks over C if it implies a disjunction $\bigvee_{i=1}^n \psi_i(x;b_i)$ such that each formula $\psi_i(x;b_i)$ divides over C.

Define $A \downarrow_C^f B \iff$ no formula in $\operatorname{tp}(A/BC)$ forks over C.

Simple theories

Forking independence was originally defined in order to study stable theories. But Kim and Pillay showed that forking independence remains well-behaved and very useful in the wider class of simple theories.

Definition (Shelah '80)

A formula $\varphi(x;y)$ has the *tree property* if there exist tuples $(a_{\eta})_{\eta\in\omega^{<\omega}}$ and $k\geq 2$ such that for all $\sigma\in\omega^{\omega}$, $\{\varphi(x;a_{\sigma|n})\mid n\in\omega\}$ is consistent, but for any $\eta\in\omega^{<\omega}$, $\{\varphi(x;a_{\hat{\eta}n})\mid n\in\omega\}$ is k-inconsistent (meaning that any subset of size k is inconsistent).

T is *simple* if no formula has the tree property.

Simple theories

Forking independence was originally defined in order to study stable theories. But Kim and Pillay showed that forking independence remains well-behaved and very useful in the wider class of simple theories.

Definition (Shelah '80)

A formula $\varphi(x;y)$ has the *tree property* if there exist tuples $(a_{\eta})_{\eta\in\omega^{<\omega}}$ and $k\geq 2$ such that for all $\sigma\in\omega^{\omega}$, $\{\varphi(x;a_{\sigma|n})\mid n\in\omega\}$ is consistent, but for any $\eta\in\omega^{<\omega}$, $\{\varphi(x;a_{\hat{\eta}\hat{n}})\mid n\in\omega\}$ is k-inconsistent (meaning that any subset of size k is inconsistent).

T is *simple* if no formula has the tree property.

Theorem (Kim '96)

- ullet T is simple if and only if $igcup^f$ is symmetric: $A igcup^f_C B \iff B igcup^f_C A$.
- If T is simple, then $\int_{-1}^{1} = \int_{-1}^{1} dx$.

Characterizing \bigcup^f

Theorem (Kim-Pillay '96)

Let T be a complete theory and \bigcup any ternary relation on subsets of \mathbb{M} . Then T is simple and $\bigcup = \bigcup^f$ if and only if \bigcup satisfies:

- Invariance.
- Symmetry.
- Existence.
- Extension.
- Full right-transitivity: If $D \subseteq C \subseteq B$, then $a \downarrow_D C$ and $a \downarrow_C B$ if and only if $a \downarrow_D B$.
- Finite character: $a \downarrow_C B$ if and only if for every finite tuple b from B, $a \downarrow_C b$.
- Local character: For all a and B, there is $C \subseteq B$ such that $|C| \le |T|$ and $a \downarrow_C B$.
- ... and the independence theorem: see next slide.

The independence theorem

The most important condition in the axiomatic characterization of forking independence in simple theories is the *independence theorem*:

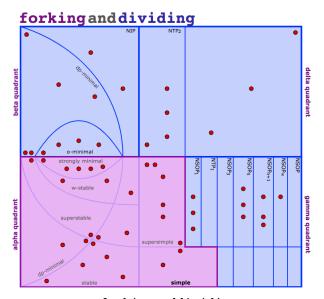
Let $M \prec \mathbb{M}$ be a model, A and B sets, and a and a' tuples. Suppose:

- \bullet $A \downarrow_M B$,
- \bullet $a \downarrow_M A$, and
- $a' \downarrow_M B.$

Then there exists a'' such that:

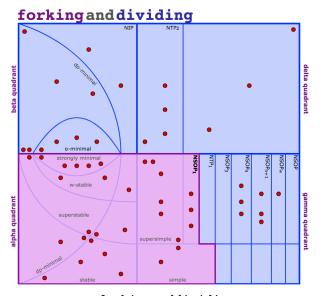
- $a'' \equiv_{MB} a'$, and
- $a'' \downarrow_M AB.$

A map of the (first-order) universe



source: forkinganddividing.com

A map of the (first-order) universe



source: forkinganddividing.com

Kim dividing

Definition

A global type $p(y) \in S_y(\mathbb{M})$ is M-invariant if for all formulas $\psi(y;z)$ and all $c \equiv_M c'$, $\psi(y;c) \in p \iff \psi(y;c') \in p$.

Fact: If $M \prec M$, then every type $q(y) \in S_y(M)$ extends to a global M-invariant type (e.g. any coheir extension).

Kim dividing

Definition

A global type $p(y) \in S_y(\mathbb{M})$ is M-invariant if for all formulas $\psi(y;z)$ and all $c \equiv_M c'$, $\psi(y;c) \in p \iff \psi(y;c') \in p$.

Fact: If $M \prec M$, then every type $q(y) \in S_y(M)$ extends to a global M-invariant type (e.g. any coheir extension).

Definition

If $p(y) \in S_y(\mathbb{M})$ is M-invariant, a *Morley sequence* over M for p(y) is a sequence $(b_i)_{i \in \omega}$ such that $b_i \models p(y)|_{Mb_0...b_{i-1}}$ for all i.

Fact: Such a Morley sequence $(b_i)_{i \in \omega}$ is M-indiscernible.

Kim dividing

Definition

A global type $p(y) \in S_y(\mathbb{M})$ is M-invariant if for all formulas $\psi(y;z)$ and all $c \equiv_M c'$, $\psi(y;c) \in p \iff \psi(y;c') \in p$.

Fact: If $M \prec \mathbb{M}$, then every type $q(y) \in S_y(M)$ extends to a global M-invariant type (e.g. any coheir extension).

Definition

If $p(y) \in S_y(\mathbb{M})$ is M-invariant, a *Morley sequence* over M for p(y) is a sequence $(b_i)_{i \in \omega}$ such that $b_i \models p(y)|_{Mb_0...b_{i-1}}$ for all i.

Fact: Such a Morley sequence $(b_i)_{i\in\omega}$ is M-indiscernible.

Definition (Ramsey, after a suggestion of Kim)

A formula $\varphi(x,b)$ Kim divides over M if there is a global M-invariant type p(y) extending $\operatorname{tp}(b/M)$ and a Morley sequence $(b_i)_{i\in\omega}$ over M for p(y) such that $\{\varphi(x,b_i)\mid i\in\omega\}$ is inconsistent.

NSOP₁ theories and Kim independence (\bigcup^K)

Definition (Shelah '04)

A formula $\varphi(x;y)$ has the *stronger order property* 1 if there exist tuples $(a_{\eta})_{\eta\in 2^{<\omega}}$ such that for all $\sigma\in 2^{\omega}$, $\{\varphi(x;a_{\sigma|_n})\mid n\in\omega\}$ is consistent, but for any $\nu,\eta\in 2^{<\omega}$, if $\nu\hat{\ }0\leq\eta$, then $\{\varphi(x;a_{\eta}),\varphi(x;a_{\nu\hat{\ }1})\}$ is inconsistent. T is NSOP $_1$ if no formula has the stronger order property 1.

Snappy name forthcoming — for now, "NSOP₁".

NSOP₁ theories and Kim independence (\bigcup^{K})

Definition (Shelah '04)

A formula $\varphi(x;y)$ has the *stronger order property* 1 if there exist tuples $(a_{\eta})_{\eta\in 2^{<\omega}}$ such that for all $\sigma\in 2^{\omega}$, $\{\varphi(x;a_{\sigma|_n})\mid n\in\omega\}$ is consistent, but for any $\nu,\eta\in 2^{<\omega}$, if $\nu\hat{\ }0\leq\eta$, then $\{\varphi(x;a_{\eta}),\varphi(x;a_{\nu\hat{\ }1})\}$ is inconsistent. T is NSOP $_1$ if no formula has the stronger order property 1.

Snappy name forthcoming — for now, "NSOP $_1$ ".

Define $a \downarrow_M^K b \iff$ no formula in $\operatorname{tp}(a/Mb)$ Kim divides over M.

Theorem (Kaplan-Ramsey '17)

- T is $NSOP_1$ if and only if $\bigcup_{i=1}^{K}$ is symmetric.
- If T is $NSOP_1$, \bigcup_{K}^{K} already satisfies extension, so "Kim forking" equals Kim dividing.

Characterizing \bigcup_{K}

Crucially, there is a Kim–Pillay style characterization of \bigcup^K in NSOP₁.

Theorem (Kaplan-Ramsey '17)

Let T be a complete theory and \bigcup any ternary relation on subsets of \mathbb{M} . Then T is NSOP_1 and $\bigcup_M = \bigcup_M^{\mathrm{K}}$ for all $M \prec \mathbb{M}$ if and only if \bigcup_M satisfies:

- Invariance: If $A \downarrow_M B$ and $A'B'M' \equiv ABM$, then $A' \downarrow_M B'$.
- ② Symmetry: If $A \bigcup_M B$, then $B \bigcup_M A$.
- **3** Monotonicity: If $A' \subseteq A$, $B' \subseteq B$, and $A \bigcup_M B$, then $A' \bigcup_M B'$.
- Existence: $A \bigcup_{M} M$.
- Strong finite character and witnessing: if $A \not\downarrow_M B$, then there is a formula $\varphi(x;b) \in \operatorname{tp}(A/MB)$ such that for any $a' \models \varphi(x;b)$, $a' \not\downarrow_M b$. Moreover, $\varphi(x;b)$ Kim divides over M.
- The independence theorem.

Deficiencies of $\bigcup_{i=1}^{K}$ in unsimple theories

A key property of \bigcup^f which is lost by \bigcup^K in properly NSOP₁ theories is:

• Base monotonicity: If $D \subseteq C \subseteq B$ and $A \downarrow_D^f B$, then $A \downarrow_C^f B$.

Deficiencies of $\bigcup_{i=1}^{K}$ in unsimple theories

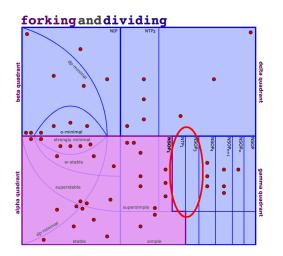
A key property of \bigcup^f which is lost by \bigcup^K in properly NSOP₁ theories is:

• Base monotonicity: If $D \subseteq C \subseteq B$ and $A \underset{D}{\downarrow_{D}} B$, then $A \underset{C}{\downarrow_{C}} B$.

Also, we currently only know how to define $A \downarrow_M^K B$ when $M \prec M$.

Why? Using the definition verbatim, $A \bigcup_C^K B$ is vacuously true if $\operatorname{tp}(B/C)$ does not extend to a global C-invariant type.

Returning to the map



Using the new criterion for $NSOP_1$, Chernikov, Ramsey, and others have shown that all known examples of $NSOP_3$ theories are $NSOP_1$.

Generic \mathcal{L} -structures

Fact: In any language \mathcal{L} , the empty \mathcal{L} -theory has a model companion $T_{\mathcal{L}}^{\emptyset}$, the theory of existentially closed \mathcal{L} -structures.

We call $T_{\mathcal{L}}^{\emptyset}$ the generic theory of \mathcal{L} -structures.

It is well-known that if $\mathcal L$ is relational, then $T_{\mathcal L}^{\emptyset}$ is simple.

Generic \mathcal{L} -structures

Fact: In any language \mathcal{L} , the empty \mathcal{L} -theory has a model companion $T_{\mathcal{L}}^{\emptyset}$, the theory of existentially closed \mathcal{L} -structures.

We call $T_{\mathcal{L}}^{\emptyset}$ the generic theory of \mathcal{L} -structures.

It is well-known that if $\mathcal L$ is relational, then $T_{\mathcal L}^\emptyset$ is simple.

In an unpublished preprint, Jeřábek showed that $T_{\mathcal{L}}^{\emptyset}$ is NSOP $_3$ for any language \mathcal{L} , and he asked:

Question

Is $T_{\mathcal{L}}^{\emptyset}$ NSOP₁? Does it have weak elimination of imaginaries?

(Later, Jeřábek independently answered these questions.)

Generic binary functions

If $\mathcal L$ contains a single binary function f, then already $T_{\mathcal L}^{\emptyset}$ is not simple.

Definition

A formula $\varphi(x;y)$ has the *tree property* 2 (TP $_2$) if there exist tuples $(a_{i,j})_{i,j<\omega}$ such that for all $\sigma\in\omega^\omega$, $\{\varphi(x;a_{n,\sigma(n)})\mid n<\omega\}$ is consistent, but for any $n<\omega$ and $i< j<\omega$, $\{\varphi(x;a_{n,i}),\varphi(x;a_{n,j})\}$ is inconsistent. T is NTP $_2$ if no formula has TP $_2$.

The formula $\varphi(x; y_1, y_2) \colon f(x, y_1) = y_2$ has TP_2 .

Let $(b_i)_{i<\omega}$ and $(c_{i,j})_{i,j<\omega}$ be distinct, and set $a_{i,j}=(b_i,c_{i,j})$.

- $\{f(x,b_n)=c_{n,\sigma(n)}\}$ is consistent, while
- $\{f(x,b_n)=c_{n,i}, f(x,b_n)=c_{n,j}\}$ is inconsistent.

Generic binary functions

If $\mathcal L$ contains a single binary function f, then already $T_{\mathcal L}^\emptyset$ is not simple.

Definition

A formula $\varphi(x;y)$ has the *tree property* 2 (TP $_2$) if there exist tuples $(a_{i,j})_{i,j<\omega}$ such that for all $\sigma\in\omega^\omega$, $\{\varphi(x;a_{n,\sigma(n)})\mid n<\omega\}$ is consistent, but for any $n<\omega$ and $i< j<\omega$, $\{\varphi(x;a_{n,i}),\varphi(x;a_{n,j})\}$ is inconsistent. T is NTP $_2$ if no formula has TP $_2$.

The formula $\varphi(x;y_1,y_2)$: $f(x,y_1)=y_2$ has TP_2 .

Let $(b_i)_{i<\omega}$ and $(c_{i,j})_{i,j<\omega}$ be distinct, and set $a_{i,j}=(b_i,c_{i,j})$.

- $\{f(x,b_n)=c_{n,\sigma(n)}\}$ is consistent, while
 - $\{f(x,b_n)=c_{n,i}, f(x,b_n)=c_{n,j}\}$ is inconsistent.

If $b \mathrel{\ \downarrow^a\ }_M c$, then $\varphi(x;b,c)$ divides over M (along an M-indiscernible sequence $(b,c_i)_{i\in\omega}$ with $c_i\neq c_j$ for all i< j) but does not Kim-divide over M (since if $(b_i,c_i)_{i\in\omega}$ is a Morley sequence, the b_i are all distinct).

Classifying $T_{\mathcal{L}}^{\emptyset}$

Theorem (K.–Ramsey, independently Jeřábek)

For any language \mathcal{L} :

- $T_{\mathcal{L}}^{\emptyset}$ eliminates quantifiers, and $\operatorname{acl}(A) = \langle A \rangle$, the substructure generated by A.
- \downarrow^a satisfies the independence theorem over arbitrary sets.
- It follows easily that $T_{\mathcal{L}}^{\emptyset}$ is NSOP₁ and $\bigcup_{k=1}^{K} = \bigcup_{k=1}^{n} N$ over models.

Classifying $T_{\mathcal{L}}^{\emptyset}$

Theorem (K.–Ramsey, independently Jeřábek)

For any language \mathcal{L} :

- $T_{\mathcal{L}}^{\emptyset}$ eliminates quantifiers, and $\operatorname{acl}(A) = \langle A \rangle$, the substructure generated by A.
- \downarrow^a satisfies the independence theorem over arbitrary sets.
- It follows easily that $T_{\mathcal{L}}^{\emptyset}$ is NSOP $_1$ and $\bigcup_{K}^{K} = \bigcup_{k=1}^{n}$ over models.

Jeřábek's preprint contains a complete classification of $T_{\mathcal{L}}^{\emptyset}$:

Relation arities:	≤ 0	≤ 1	any	any
Function arities:	≤ 0	≤ 1	≤ 1	any
$T_{\mathcal{L}}^{\emptyset}$ is:	strongly minimal	stable*	simple*	$NSOP_1$

^{*} If $T_{\mathcal{L}}^{\emptyset}$ is stable/simple, then it is superstable/supersimple if and only if there is at most one unary function symbol in L.

Projective planes

An *incidence structure* is a structure in the language $\{P, L, I\}$, where:

- ullet P and L are unary relation partitioning the structure into two disjoint sets ("points" and "lines")
- I is a binary relation ("incidence") such that if I(a,b) holds, then $a \in P$ and $b \in L$.

In other words, an incidence structure is a bipartite graph with the two halves of the partition named.

Projective planes

An *incidence structure* is a structure in the language $\{P, L, I\}$, where:

- P and L are unary relation partitioning the structure into two disjoint sets ("points" and "lines")
- I is a binary relation ("incidence") such that if I(a,b) holds, then $a \in P$ and $b \in L$.

In other words, an incidence structure is a bipartite graph with the two halves of the partition named.

An incidence structure A is a partial plane if any two points are incident with at most one line and any two lines are incident with at most one point. Let $T_{2,2}^p$ be the theory of partial planes.

Projective planes

An *incidence structure* is a structure in the language $\{P, L, I\}$, where:

- ullet P and L are unary relation partitioning the structure into two disjoint sets ("points" and "lines")
- I is a binary relation ("incidence") such that if I(a,b) holds, then $a \in P$ and $b \in L$.

In other words, an incidence structure is a bipartite graph with the two halves of the partition named.

An incidence structure A is a **projective plane** if any two points are incident with **exactly** one line and any two lines are incident with **exactly** one point. Let $T_{2,2}^c$ be the theory of **projective** planes.

Incidence structures and bipartite graphs

Equivalently, an incidence structure is a partial plane if it does not contain a copy of the complete bipartite graph $K_{2,2}$.

Incidence structures and bipartite graphs

Equivalently, an incidence structure is a partial plane if it does not contain a copy of the complete bipartite graph $K_{2,2}$.

Almost everything I will say can be generalized to $T_{m,n}^p$ the theory of incidence structures which do not contain a copy of $K_{m,n}$, for $m,n \geq 2$.

Note that the model companion $T_{m,n}$ of $T_{m,n}^p$ can be viewed as bipartite analogues of the Henson theories T_n (T_n is the generic theory of graphs which do not contain a copy of the complete graph K_n).

In this talk, I'll stick to projective planes for simplicity.

Generic projective planes

For any subset A of a projective plane B, there is a smallest projective plane containing it, called its I-closure, obtained by iteratively adding the intersection points of all pairs of lines, and the connecting lines of all pairs of points.

Definition

A formula $\varphi(\overline{x})$ is basic existential if it has the form $\exists \overline{y} \bigwedge_{\psi \in p} \psi(\overline{x}, \overline{y})$, where $p(\overline{x}, \overline{y})$ is a complete quantifier-free type which implies that \overline{y} is in the I-closure of \overline{x} .

Generic projective planes

For any subset A of a projective plane B, there is a smallest projective plane containing it, called its I-closure, obtained by iteratively adding the intersection points of all pairs of lines, and the connecting lines of all pairs of points.

Definition

A formula $\varphi(\overline{x})$ is basic existential if it has the form $\exists \overline{y} \bigwedge_{\psi \in p} \psi(\overline{x}, \overline{y})$, where $p(\overline{x}, \overline{y})$ is a complete quantifier-free type which implies that \overline{y} is in the I-closure of \overline{x} .

Theorem (Conant-K.)

 $T^p_{2,2}$ has a model companion $T_{2,2}$, which is also the model companion of $T^c_{2,2}$. In $T_{2,2}$, acl coincides with I-closure, and $T_{2,2}$ eliminates quantifiers "down to the I-closure": every formula is equivalent to a disjunction of basic existential formulas.

Independence and NSOP₁

Just as in the case of $T_{\mathcal{L}}^{\emptyset}$:

Theorem (Conant-K.)

- \bigcup^{I} satisfies the independence theorem over arbitrary sets.
- It follows easily that $T_{2,2}$ is NSOP₁ and $\bigcup_{k=1}^{K} |I_{k}|$ over models.

Independence and NSOP₁

Just as in the case of $T_{\mathcal{L}}^{\emptyset}$:

Theorem (Conant-K.)

- ullet igsep satisfies the independence theorem over arbitrary sets.
- It follows easily that $T_{2,2}$ is NSOP $_1$ and $\bigcup^K = \bigcup^I$ over models.

So $T_{2,2}$ is tamer (in a sense) than the Henson theories T_n , which have SOP_3 when $n \geq 3$.

On the other hand, T_n is \aleph_0 -categorical, but $T_{2,2}$ is not – acl is not locally finite.

Failure of simplicity

Let p_1 and p_2 be points and ℓ_1 and ℓ_2 lines such that there are no incidences between the p_i and ℓ_j , but the unique line ℓ^* through p_1 and p_2 contains the unique point p^* at the intersection of ℓ_1 and ℓ_2 .

Letting $\varphi(x_1,x_2,x^*,y_1,y_2,y^*)$ be the conjunction of all atomic formulas satisfied by $(p_1,p_2,p^*,\ell_1,\ell_2,\ell^*)$, one can show that the formula $\psi(x_1,y_1;x_2,y_2)\colon \exists x^*\,\exists y^*\,\varphi(x_1,x_2,x^*,y_1,y_2,y^*)$ has TP_2 .

Failure of simplicity

Let p_1 and p_2 be points and ℓ_1 and ℓ_2 lines such that there are no incidences between the p_i and ℓ_j , but the unique line ℓ^* through p_1 and p_2 contains the unique point p^* at the intersection of ℓ_1 and ℓ_2 .

Letting $\varphi(x_1,x_2,x^*,y_1,y_2,y^*)$ be the conjunction of all atomic formulas satisfied by $(p_1,p_2,p^*,\ell_1,\ell_2,\ell^*)$, one can show that the formula $\psi(x_1,y_1;x_2,y_2)\colon \exists x^*\,\exists y^*\,\varphi(x_1,x_2,x^*,y_1,y_2,y^*)$ has TP_2 .

Also, $p_1\ell_1 \mathrel{\begin{subarray}{c} \begin{subarray}{c} \begin{su$

Characterizing dividing

Now I'll make some remarks about $T_{\mathcal{L}}^{\emptyset}$ and $T_{2,2}$ in parallel.

Theorem (K.–Ramsey)

- In $T_{\mathcal{L}}^{\emptyset}$, \downarrow^d is obtained by "forcing" base monotonicity on \downarrow^a : $A \downarrow^d_{C} B$ if and only if $A \downarrow^a_{C'} B$ for all $C \subseteq C' \subseteq \operatorname{acl}(BC)$.
- There is a formula which forks but does not divide over \emptyset . For example, if f is a binary function symbol, take the formula $f(x,b) = c \lor x = b$, where $b \notin \operatorname{acl}(\emptyset)$ and $c \notin \operatorname{acl}(b)$.

Characterizing dividing

Now I'll make some remarks about $T_{\mathcal{L}}^{\emptyset}$ and $T_{2,2}$ in parallel.

Theorem (K.-Ramsey)

- In $T_{\mathcal{L}}^{\emptyset}$, \bigcup_{c}^{d} is obtained by "forcing" base monotonicity on \bigcup_{c}^{a} : $A \bigcup_{c}^{d} C B$ if and only if $A \bigcup_{c}^{a} C' B$ for all $C \subseteq C' \subseteq \operatorname{acl}(BC)$.
- There is a formula which forks but does not divide over \emptyset . For example, if f is a binary function symbol, take the formula $f(x,b) = c \lor x = b$, where $b \notin \operatorname{acl}(\emptyset)$ and $c \notin \operatorname{acl}(b)$.

Theorem (Conant-K.)

- In $T_{2,2}$, $\begin{subarray}{c} \bot \\ A \begin{subarray}{c} \bot \\ C \end{subarray}$ is obtained by "forcing" base monotonicity on $\begin{subarray}{c} \bot \\ C \end{subarray}$: $A \begin{subarray}{c} \bot \\ C \end{subarray}$ $A \begin{subarray}{c} \bot \\ C \begin{subarray}{c} \bot \\ C \begin{subarray$
- If $\varphi(x_1, y_1; x_2, y_2)$ be the formula from the last slide, then the formula $\varphi(x_1, y_1; p_2, \ell_2) \vee x_1 = p_2 \vee y_1 = \ell_2$ forks but does not divide over \emptyset .

Forking and dividing

However, in both $T_{\mathcal{L}}^{\emptyset}$ and $T_{2,2}$, $\bigcup_{j=1}^{d} f_{j}$, i.e. forking = dividing for complete types. In both cases, we follow a common strategy:

Forking and dividing

However, in both $T_{\mathcal{L}}^{\emptyset}$ and $T_{2,2}$, $\bigcup_{j=1}^{d} f_{j}$, i.e. forking = dividing for complete types. In both cases, we follow a common strategy:

Lemma

Suppose \downarrow^{\otimes} is a ternary relation satisfying existence and extension, and such that for all sets A and $B\subseteq C\subseteq D$, we have

$$A \underset{D}{\downarrow^d} C \text{ and } A \underset{C}{\downarrow^{\otimes}} B \implies A \underset{D}{\downarrow^d} B.$$

Then $\bigcup_{f} = \bigcup_{d}$.

Proof.

It suffices to show that \downarrow^d satisfies extension. Given $A \downarrow^d_D C$ and $C \subseteq B$, we have $A \downarrow^\otimes_C C$ (by existence), so there is some $A' \equiv_C A$ such that $A' \downarrow^\otimes_C B$ (by extension). By invariance, also $A' \downarrow^d_D C$. So $A' \downarrow^d_D B$. \square

Defining |

In $T_{\mathcal{L}}^{\emptyset}$, define $A \underset{C}{\bigcup_{C}} B$ if and only if $\operatorname{acl}(ABC) \cong AC \otimes_{C} BC$, the fibered coproduct of AC and BC over C in the category of \mathcal{L} -structures (i.e. the \mathcal{L} -structure freely generated by AC and BC over C).

Defining 🕒

In $T_{\mathcal{L}}^{\emptyset}$, define $A \underset{C}{\bigcup_{C}} B$ if and only if $\operatorname{acl}(ABC) \cong AC \otimes_{C} BC$, the fibered coproduct of AC and BC over C in the category of \mathcal{L} -structures (i.e. the \mathcal{L} -structure freely generated by AC and BC over C).

In $T_{2,2}$, there is also a natural notion of "free generation" (due to Marshall Hall in 1943). Given any partial plane $A \models A_{2,2}^p$:

- Define $A_0 = A$.
- A pair of lines in A_n is *open* if they do not have an intersection point in A_n , and a pair of points in A_n is *open* if they do not have a connecting line.
- Let A_{n+1} be the partial plane obtained by adding an intersection point to each open pair of lines in A_n and a connecting line to each open pair of lines in A_n .
- Set $F(A) = \bigcup_{n \in \omega} A_n$, the free completion of A.

Define $A \underset{C}{\bigcup}_{C}^{\otimes} B$ if and only if $\operatorname{acl}(ABC) \cong F(\operatorname{acl}(AB) \cup \operatorname{acl}(AC))$.

Recall that T has weak elimination of imaginaries if for every imaginary $e \in \mathbb{M}^{eq} \models T^{eq}$, there exists a real tuple $a \in \mathbb{M}$ such that $e \in \operatorname{dcl}^{eq}(a)$ and $a \in \operatorname{acl}^{eq}(e)$.

Lemma (Montenegro-Rideau)

Suppose there is a ternary relation \bigcup on $\mathbb{M} \models T$, satisfying the following properties:

- (i) Given $a,b \in \mathbb{M}$ and $C^* = \operatorname{acl}^{\operatorname{eq}}(C^*) \subset \mathbb{M}^{\operatorname{eq}}$, and letting $C = C^* \cap \mathbb{M}$, there exists $a' \equiv_{C^*} a$ such that $a' \downarrow_C b$.
- (ii) Given $a,b,c\in\mathbb{M}$ and $C=\operatorname{acl}(C)\subset\mathbb{M}$ such that $a\equiv_C b,\ b\downarrow_C a$, and $c\downarrow_C a$, there exists c' such that $c'a\equiv_C c'b\equiv_C ca$.

Then T has weak elimination of imaginaries.

- (i) Given $a,b\in\mathbb{M}$ and $C^*=\operatorname{acl}^{\operatorname{eq}}(C^*)\subset\mathbb{M}^{\operatorname{eq}}$, and letting $C=C^*\cap\mathbb{M}$, there exists $a'\equiv_{C^*}a$ such that $a'\downarrow_C b$.
- (ii) Given $a,b,c\in\mathbb{M}$ and $C=\operatorname{acl}(C)\subset\mathbb{M}$ such that $a\equiv_C b,\ b\downarrow_C a$, and $c\downarrow_C a$, there exists c' such that $c'a\equiv_C c'b\equiv_C ca$.

Proof.

Fix $e\in \mathbb{M}^{\mathrm{eq}}$, and let $C^*=\mathrm{acl}^{\mathrm{eq}}(e)$ and $C=C^*\cap \mathbb{M}$. It suffices to show that $e\in \mathrm{dcl}^{\mathrm{eq}}(C)$, so pick some $\sigma\in \mathrm{Aut}(\mathbb{M}^{\mathrm{eq}}/C)$ and show $\sigma(e)=e$.

Pick $a\in\mathbb{M}$ and a \emptyset -definable function f such that f(a)=e. By (i), there exist $b\equiv_{C^*}\sigma(a)$ and $c\equiv_{C^*}a$ such that $b\downarrow_C a$ and $c\downarrow_C a$. Note that f(c)=e. Since $a\equiv_C\sigma(a)\equiv_C b$, we apply (ii) to find c' such that $c'a\equiv_C c'b\equiv_C ca$. Now f(a)=f(c) implies f(a)=f(c') and f(b)=f(c'). So f(b)=e, which implies $f(\sigma(a))=e$, so $\sigma(e)=e$. \square

We seek to apply the Lemma to \bigcup^a and \bigcup^I in our theories.

- (ii) follows from the independence theorem, so it suffices to show (i):
 - (i) Given $a,b\in\mathbb{M}$ and $C^*=\operatorname{acl}^{\operatorname{eq}}(C^*)\subset\mathbb{M}^{\operatorname{eq}}$, and letting $C=C^*\cap\mathbb{M}$, there exists $a'\equiv_{C^*}a$ such that $a'\downarrow_C b$.

We seek to apply the Lemma to \bigcup^a and \bigcup^I in our theories.

- (ii) follows from the independence theorem, so it suffices to show (i):
 - (i) Given $a,b\in\mathbb{M}$ and $C^*=\operatorname{acl}^{\operatorname{eq}}(C^*)\subset\mathbb{M}^{\operatorname{eq}}$, and letting $C=C^*\cap\mathbb{M}$, there exists $a'\equiv_{C^*}a$ such that $a'\downarrow_C b$.

When $\bigcup = \bigcup^a$, this is not hard: Use extension for \bigcup^a in $(T_{\mathcal{L}}^{\emptyset})^{\mathrm{eq}}$ to find $a' \equiv_{C^*} a$ such that $a' \bigcup^a_{C^*} b$ in \mathbb{M}^{eq} . Intersecting with \mathbb{M} , $a' \bigcup^a_{C} b$.

In $T_{2,2}$, we don't have a version of \bigcup^I in $(T_{2,2})^{\mathrm{eq}}$. Instead, we show that if we take a large \bigcup^a -independent (in \mathbb{M}^{eq}) array in $\mathrm{tp}(b/C^*)$, we must have $a \bigcup^I_C b'$ for some b' in the array.

We seek to apply the Lemma to \bigcup^a and \bigcup^I in our theories.

- (ii) follows from the independence theorem, so it suffices to show (i):
 - (i) Given $a,b\in\mathbb{M}$ and $C^*=\operatorname{acl}^{\operatorname{eq}}(C^*)\subset\mathbb{M}^{\operatorname{eq}}$, and letting $C=C^*\cap\mathbb{M}$, there exists $a'\equiv_{C^*}a$ such that $a'\downarrow_C b$.

When $\bigcup = \bigcup^a$, this is not hard: Use extension for \bigcup^a in $(T_{\mathcal{L}}^{\emptyset})^{\mathrm{eq}}$ to find $a' \equiv_{C^*} a$ such that $a' \bigcup^a_{C^*} b$ in \mathbb{M}^{eq} . Intersecting with \mathbb{M} , $a' \bigcup^a_{C} b$.

In $T_{2,2}$, we don't have a version of \bigcup^I in $(T_{2,2})^{\mathrm{eq}}$. Instead, we show that if we take a large \bigcup^a -independent (in \mathbb{M}^{eq}) array in $\mathrm{tp}(b/C^*)$, we must have $a \bigcup^I_C b'$ for some b' in the array.

Theorem (K.-Ramsey, Conant-K.)

 T_L^{\emptyset} and $T_{2,2}$ have weak elimination of imaginaries.

We seek to apply the Lemma to $\bigcup_{i=1}^{n}$ and $\bigcup_{i=1}^{n}$ in our theories.

- (ii) follows from the independence theorem, so it suffices to show (i):
 - (i) Given $a,b\in\mathbb{M}$ and $C^*=\operatorname{acl}^{\operatorname{eq}}(C^*)\subset\mathbb{M}^{\operatorname{eq}}$, and letting $C=C^*\cap\mathbb{M}$, there exists $a'\equiv_{C^*}a$ such that $a'\downarrow_C b$.

When $\bigcup = \bigcup^a$, this is not hard: Use extension for \bigcup^a in $(T_{\mathcal{L}}^{\emptyset})^{\mathrm{eq}}$ to find $a' \equiv_{C^*} a$ such that $a' \bigcup^a_{C^*} b$ in \mathbb{M}^{eq} . Intersecting with \mathbb{M} , $a' \bigcup^a_{C} b$.

In $T_{2,2}$, we don't have a version of \bigcup^I in $(T_{2,2})^{\mathrm{eq}}$. Instead, we show that if we take a large \bigcup^a -independent (in \mathbb{M}^{eq}) array in $\mathrm{tp}(b/C^*)$, we must have $a \bigcup^I_C b'$ for some b' in the array.

Theorem (K.-Ramsey, Conant-K.)

 T_L^{\emptyset} and $T_{2,2}$ have weak elimination of imaginaries.

Having eliminated imaginaries, we can also show that forking and thorn forking coincide in these theories, so neither is rosy.

Adding generic structure

Recipe:

- **1** Start with a base \mathcal{L} -theory T.
- **2** Add new symbols: $\mathcal{L} \subseteq \mathcal{L}_{new}$.
- **3** And new axioms governing them: $T \subseteq T_{\text{new}}$.
- Take the model companion (if it exists): T_{new}^* .

Adding generic structure

Recipe:

- **1** Start with a base \mathcal{L} -theory T.
- **2** Add new symbols: $\mathcal{L} \subseteq \mathcal{L}_{new}$.
- **3** And new axioms governing them: $T \subseteq T_{\text{new}}$.
- Take the model companion (if it exists): T_{new}^* .

Example 0: Generic automorphisms

- $\mathcal{L}_{\mathsf{new}} = \mathcal{L} \cup \{\sigma\}$, a unary function symbol.
- $T_{\text{new}} = T \cup "\sigma \text{ is an } \mathcal{L}\text{-automorphism"}.$
- ullet $T_{\mathsf{new}}^* = T_A$, the theory T with a generic automorphism

[e.g. if
$$T = ACF$$
, then $T_A = ACFA$]

The question of whether T_A exists is often nontrivial.

Generic expansions

Example 1: Generic expansions

- $\mathcal{L}_{\text{new}} = \mathcal{L}'$, any expansion of \mathcal{L} by new constant, function, and relation symbols.
- ullet $T_{\text{new}}=T$, so the new symbols are interpreted arbitrarily.
- $T_{\text{new}}^* = T_{\mathcal{L}'}$, the generic expansion of T to \mathcal{L}' .

Generic expansions

Example 1: Generic expansions

- $\mathcal{L}_{\text{new}} = \mathcal{L}'$, any expansion of \mathcal{L} by new constant, function, and relation symbols.
- ullet $T_{\text{new}}=T$, so the new symbols are interpreted arbitrarily.
- $T_{\text{new}}^* = T_{\mathcal{L}'}$, the generic expansion of T to \mathcal{L}' .

Theorem (Winkler '75)

If T is model complete and eliminates \exists^{∞} , then $T_{\mathcal{L}'}$ exists.

Generic Skolemizations

Definition

A definable function $f_{\varphi}(\overline{y})$ is a *Skolem function* for the formula $\varphi(x; \overline{y})$ if $\mathbb{M} \models \varphi(f_{\varphi}(\overline{a}), \overline{a})$ whenever $\varphi(\mathbb{M}, \overline{a})$ is nonempty.

Generic Skolemizations

Definition

A definable function $f_{\varphi}(\overline{y})$ is a *Skolem function* for the formula $\varphi(x; \overline{y})$ if $\mathbb{M} \models \varphi(f_{\varphi}(\overline{a}), \overline{a})$ whenever $\varphi(\mathbb{M}, \overline{a})$ is nonempty.

Example 2: Generic Skolemizations

- $\mathcal{L}_{\mathsf{new}} = \mathcal{L}_{\mathsf{Sk}} = \mathcal{L} \cup \{ f_{\varphi} \mid \varphi(x; \overline{y}) \text{ an } \mathcal{L}\text{-formula} \}.$
- $T_{\mathsf{new}} = T \cup \{ \forall \overline{y} \, (\exists x \, \varphi(x; \overline{y}) \to \varphi(f_{\varphi}(\overline{y}); \overline{y})) \mid \varphi(x; \overline{y}) \text{ an } \mathcal{L}\text{-formula} \}.$
- $T_{\text{new}}^* = T_{\text{Sk}}$, the generic Skolemization of T.

Generic Skolemizations

Definition

A definable function $f_{\varphi}(\overline{y})$ is a *Skolem function* for the formula $\varphi(x; \overline{y})$ if $\mathbb{M} \models \varphi(f_{\varphi}(\overline{a}), \overline{a})$ whenever $\varphi(\mathbb{M}, \overline{a})$ is nonempty.

Example 2: Generic Skolemizations

- $\mathcal{L}_{\mathsf{new}} = \mathcal{L}_{\mathsf{Sk}} = \mathcal{L} \cup \{ f_{\varphi} \mid \varphi(x; \overline{y}) \text{ an } \mathcal{L}\text{-formula} \}.$
- $T_{\mathsf{new}} = T \cup \{ \forall \overline{y} \, (\exists x \, \varphi(x; \overline{y}) \to \varphi(f_{\varphi}(\overline{y}); \overline{y})) \mid \varphi(x; \overline{y}) \text{ an } \mathcal{L}\text{-formula} \}.$
- $T_{\text{new}}^* = T_{\text{Sk}}$, the generic Skolemization of T.

Theorem (Winkler '75)

If T is model complete and eliminates \exists^{∞} , then T_{Sk} exists.

For the rest of this talk, assume T is model complete and eliminates \exists^{∞} .

For the rest of this talk, assume T is model complete and eliminates \exists^{∞} .

Theorem (Chatzidakis-Pillay '98)

- If T is stable and T_A exists, then T_A is simple.
- If T is simple and $\mathcal{L}' = \mathcal{L} \cup \{P\}$, where P is a unary relation symbol, then $T_{\mathcal{L}'}$ is simple.

For the rest of this talk, assume T is model complete and eliminates \exists^{∞} .

Theorem (Chatzidakis-Pillay '98)

- If T is stable and T_A exists, then T_A is simple.
- If T is simple and $\mathcal{L}' = \mathcal{L} \cup \{P\}$, where P is a unary relation symbol, then $T_{\mathcal{L}'}$ is simple.

Theorem (Nübling '03)

- Let T_{Sk}^a be the theory obtained by adding generic Skolem functions for algebraic formulas only. If T is simple, then T_{Sk}^a is simple.
- If T is simple with QE, acl(A) = A for all sets A, and $\mathcal{L}' = \mathcal{L} \cup \{f\}$, where f is a unary function symbol, then $T_{\mathcal{L}'}$ is simple.

Each of the results on the previous slide (except the last, which Nübling proves by counting types), has the following proof strategy:

- Let T' be the generic theory expanding T, let $\mathbb{M}' \models T'$ be a monster model, and let $\mathbb{M} \models T$ be its reduct to \mathcal{L} .
- Define a notion of independence in T' in terms of independence in T:

$$a \underset{C}{\bigcup} b \text{ in } \mathbb{M}' \iff \operatorname{acl}_{T'}(Ca) \underset{C}{\bigcup^f} \operatorname{acl}_{T'}(Cb) \text{ in } \mathbb{M}.$$

ullet Apply the Kim–Pillay theorem characterizing $igcup_f$ in simple theories. The main difficulty is checking the independence theorem.

New preservation results

Theorem (K.–Ramsey)

• For any $\mathcal{L}' \supseteq \mathcal{L}$, if T is NSOP₁, then $T_{\mathcal{L}'}$ is NSOP₁. Further, for $\mathbb{M}' \models T_{\mathcal{L}'}$ and $\mathbb{M} \models T$ its reduct to \mathcal{L} ,

$$a \underset{M}{\overset{K}{\bigcup}} b \text{ in } \mathbb{M}' \iff \operatorname{acl}_{T_{\mathcal{L}'}}(Ma) \underset{M}{\overset{K}{\bigcup}} \operatorname{acl}_{T_{\mathcal{L}'}}(Mb) \text{ in } \mathbb{M}.$$

• If T is NSOP₁, then T_{Sk} is NSOP₁. Further, for $\mathbb{M}' \models T_{Sk}$ and $\mathbb{M} \models T$ its reduct to \mathcal{L} ,

$$a \underset{M}{\overset{K}{\bigcup}} b \text{ in } \mathbb{M}' \iff \operatorname{acl}_{T_{\operatorname{Sk}}}(Ma) \underset{M}{\overset{K}{\bigcup}} \operatorname{acl}_{T_{\operatorname{Sk}}}(Mb) \text{ in } \mathbb{M}.$$

Proof strategy: Apply the Kaplan–Ramsey theorem characterizing $\bigcup_{i=1}^K$ in NSOP₁ theories. Again, the main difficulty is the independence theorem. The proof involves some technical work on the relationship between $\bigcup_{i=1}^K$ and $\bigcup_{i=1}^a$ in arbitrary NSOP₁ theories.

Theorem (Kaplan–Ramsey)

If T is NSOP₁, \bigcup_{K} satisfies the following properties:

- Extension: if $a \downarrow_M^K b$, then for any c, there exists a' such that $a' \equiv_{Mb} a$ and $a' \downarrow_M^K bc$.
- ② The chain condition: if $a \downarrow_M^K b$ and $I = (b_i)_{i < \omega}$ is a Morley sequence over M in a global M-invariant type extending $\operatorname{tp}(b/M)$, then there exists a' such that $a' \equiv_{Mb} a$, $a' \downarrow_M^K I$, and I is Ma'-indiscernible.
- **③** The independence theorem: if $a \bigcup_{M}^{K} b$, $a' \bigcup_{M}^{K} c$, $b \bigcup_{M}^{K} c$, and $a \equiv_{M} a'$, then there exists a'' such that $a'' \equiv_{Mb} a$, $a'' \equiv_{Mc} a$, and $a'' \bigcup_{M}^{K} bc$.

Theorem (K.–Ramsey)

If T is $NSOP_1$, \bigcup_{K} satisfies the following properties:

- **1** Extension: if $a \downarrow_M^K b$, then for any c, there exists a' such that $a' \equiv_{Mb} a$ and $a' \downarrow_M^K bc$, and further, $a' \downarrow_{Mb}^a c$.
- ② The chain condition: if $a \downarrow^{\mathbb{K}}_{M} b$ and $I = (b_{i})_{i < \omega}$ is a Morley sequence over M in a global M-invariant type extending $\operatorname{tp}(b/M)$, then there exists a' such that $a' \equiv_{Mb} a$, $a' \downarrow^{\mathbb{K}}_{M} I$, and I is Ma'-indiscernible, and further, $b_{i} \downarrow^{a}_{Ma'} b_{j}$ for all $i \neq j$.
- $\begin{array}{l} \textbf{3} \ \ \textit{The independence theorem: if } a \mathrel{\mathop{\bigcup}^{\mathrm{K}}}_{M} b, \ a' \mathrel{\mathop{\bigcup}^{\mathrm{K}}}_{M} c, \ b \mathrel{\mathop{\bigcup}^{\mathrm{K}}}_{M} c, \ \mathsf{and} \\ a \mathrel{\mathop{\equiv}_{M}} a', \ \mathsf{then there exists} \ a'' \ \mathsf{such that} \ a'' \mathrel{\mathop{\equiv}_{Mb}} a, \ a'' \mathrel{\mathop{\equiv}_{Mc}} a, \ \mathsf{and} \\ a'' \mathrel{\mathop{\bigcup}^{\mathrm{K}}}_{M} bc, \ \mathsf{and} \ \mathsf{further,} \ a'' \mathrel{\mathop{\bigcup}^{\mathrm{a}}}_{Mb} c, \ a'' \mathrel{\mathop{\bigcup}^{\mathrm{a}}}_{Mc} b, \ \mathsf{and} \ b \mathrel{\mathop{\bigcup}^{\mathrm{a}}}_{Ma''} c. \end{array}$

Theorem (K.–Ramsey)

If T is NSOP₁, $\bigcup_{i=1}^{K}$ satisfies the following properties:

- Extension: if $a \downarrow_M^K b$, then for any c, there exists a' such that $a' \equiv_{Mb} a$ and $a' \downarrow_M^K bc$, and further, $a' \downarrow_{Mb}^a c$.
- ② The chain condition: if $a \downarrow_M^K b$ and $I = (b_i)_{i < \omega}$ is a Morley sequence over M in a global M-invariant type extending $\operatorname{tp}(b/M)$, then there exists a' such that $a' \equiv_{Mb} a$, $a' \downarrow_M^K I$, and I is Ma'-indiscernible, and further, $b_i \downarrow_{Ma'}^a b_j$ for all $i \neq j$.
- $\textbf{3} \ \, \textit{The independence theorem: if } a \mathrel{\mathop{\bigcup}^{\mathrm{K}}}_{M} b, \, a' \mathrel{\mathop{\bigcup}^{\mathrm{K}}}_{M} c, \, b \mathrel{\mathop{\bigcup}^{\mathrm{K}}}_{M} c, \, \mathsf{and} \\ a \mathrel{\mathop{\equiv}}_{M} a', \, \mathsf{then there exists} \, a'' \, \mathsf{such that} \, a'' \mathrel{\mathop{\equiv}}_{Mb} a, \, a'' \mathrel{\mathop{\equiv}}_{Mc} a, \, \mathsf{and} \\ a'' \mathrel{\mathop{\bigcup}^{\mathrm{K}}}_{M} bc, \, \mathsf{and further, } \, a'' \mathrel{\mathop{\bigcup}^{\mathrm{a}}}_{Mb} c, \, a'' \mathrel{\mathop{\bigcup}^{\mathrm{a}}}_{Mc} b, \, \mathsf{and} \, b \mathrel{\mathop{\bigcup}^{\mathrm{a}}}_{Ma''} c.$

If T is simple (so $\bigcup_{k=0}^{\infty} f = \bigcup_{k=0}^{\infty} f$), all of the **and further** clauses are easy, e.g.:

$$a' \underset{M}{\downarrow^f} bc \implies a' \underset{Mb}{\downarrow^f} c \implies a' \underset{Mb}{\downarrow^a} c$$

Built-in Skolem functions

The generic Skolemization $T_{\rm Sk}$ has a Skolem function for every \mathcal{L} -formula, but not necessarily for every $\mathcal{L}_{\rm Sk}$ -formula. But we can iterate the construction to obtain an expansion with Skolem functions for all formulas.

Corollary (K.-Ramsey)

Any NSOP₁ theory T which eliminates \exists^{∞} has an expansion to an NSOP₁ theory T_{Sk}^{∞} in a language $\mathcal{L}_{\mathrm{Sk}}^{\infty}$ with built-in Skolem functions. Further, for $\mathbb{M}_{\mathrm{Sk}}^{\infty} \models T_{\mathrm{Sk}}^{\infty}$ and $\mathbb{M} \models T$ its reduct to \mathcal{L} ,

$$a \underset{M}{\overset{\kappa}{\bigcup}} b \text{ in } \mathbb{M}^{\infty}_{\operatorname{Sk}} \iff \operatorname{acl}_{T^{\infty}_{\operatorname{Sk}}}(Ma) \underset{M}{\overset{\kappa}{\bigcup}} \operatorname{acl}_{T^{\infty}_{\operatorname{Sk}}}(Mb) \text{ in } \mathbb{M}.$$

Built-in Skolem functions

The generic Skolemization $T_{\rm Sk}$ has a Skolem function for every \mathcal{L} -formula, but not necessarily for every $\mathcal{L}_{\rm Sk}$ -formula. But we can iterate the construction to obtain an expansion with Skolem functions for all formulas.

Corollary (K.-Ramsey)

Any NSOP₁ theory T which eliminates \exists^{∞} has an expansion to an NSOP₁ theory T_{Sk}^{∞} in a language $\mathcal{L}_{\mathrm{Sk}}^{\infty}$ with built-in Skolem functions. Further, for $\mathbb{M}_{\mathrm{Sk}}^{\infty} \models T_{\mathrm{Sk}}^{\infty}$ and $\mathbb{M} \models T$ its reduct to \mathcal{L} ,

$$a \underset{M}{\overset{\kappa}{\bigcup}} b \text{ in } \mathbb{M}^{\infty}_{\operatorname{Sk}} \iff \operatorname{acl}_{T^{\infty}_{\operatorname{Sk}}}(Ma) \underset{M}{\overset{\kappa}{\bigcup}} \operatorname{acl}_{T^{\infty}_{\operatorname{Sk}}}(Mb) \text{ in } \mathbb{M}.$$

This result may turn out to be a useful technical tool: in an NSOP₁ theory with built-in Skolem functions, \bigcup^K makes sense over an arbitrary base C, since $\operatorname{acl}(C)$ is a model.