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In this note, we show that forking and dividing are the same for complete types
in free amalgamation theories with disintegrated algebraic closure. The canonical
examples of such theories come from Fräıssé limits of free amalgamation classes in
finite relational languages, and also the universal, existentially closed (Kn+K3)-free
graph in which one has free amalgamation over algebraically closed bases.

Let T be a complete first-order theory with monster model M. We say that a
small subset A ⊂ M is closed if acl(A) = A. We use singleton letters a, b, c, . . . to
denote tuples from M (which may be infinite). The following definition is from [4].

Definition 1. T is a free amalgamation theory if there is a ternary relation
|̂ , defined on small subsets of M, satisfying the following axioms.

(i) (invariance) For allA,B,C, ifA |̂
C
B and σ ∈ Aut(M) then σ(A) |̂

σ(C)
σ(B).

(ii) (monotonicity) For all A,B,C, if A |̂
C
B, A0 ⊆ A, and B0 ⊆ B, then

A0 |̂ C B0.

(iii) (symmetry) For all A,B,C, if A |̂
C
B then B |̂

C
A.

(iv) (full transitivity) For all A and D ⊆ C ⊆ B, A |̂
D
B if and only if A |̂

C
B

and A |̂
D
C.

(v) (full existence) For all B,C ⊂ M and tuples a ∈ M, if C is closed then there
is a′ ≡C a such that a′ |̂

C
B.

(vi) (stationarity) For all closed C ⊂ M and closed tuples a, a′, b ∈ M, with
C ⊆ a ∩ b, if a |̂

C
b, a′ |̂

C
b, and a′ ≡C a, then ab ≡C a′b.

(vii) (freedom) For all A,B,C,D, if A |̂
C
B and C∩AB ⊆ D ⊆ C, then A |̂

D
B.

(viii) (closure) For all closed A,B,C, if C ⊆ A∩B and A |̂
C
B then AB is closed.

We will ultimately focus on the case when T has disintegrated algebraic closure,
which is to say that the algebraic closure of any set A ⊂ M is the union of the
algebraic closures of singleton elements in A. This is equivalent to the property that
AB is closed for any closed A,B ⊂ M. The following are the main motivational
examples of free amalgamation theories with disintegrated algebraic closure.

Example 2.

(1) Let L be a finite relational language and let K be a Fräıssé class of finite L-
structures, which is closed under free amalgamation of L-structures. Let T be
the complete theory of the Fräıssé limit of K. Then T is a free amalgamation
theory, and acl(A) = A for any A ⊂M.

(2) Let L be the language of graphs and fix n ≥ 3. There is a unique (up to
isomorphism) countable, universal, and existentially complete (Kn + K3)-free
graph (where Kn + K3 denotes the free amalgamation of Kn and K3 over a
single vertex). If T is the complete theory of this graph, then T is a free
amalgamation theory with disintegrated algebraic closure.
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In the above examples, the desired ternary relation |̂ is free amalgamation of
relational structures: given A,B,C ⊂ M, A |̂

C
B if and only if, for any relation

R ∈ L and tuple x ∈ ABC (of appropriate length), if R(x) holds then x ∈ AC
or x ∈ BC. The verification of the axioms of Definition 1 for these examples is
sketched in [4]. In the first case, all axioms are immediate from classical Fräıssé
theory (see, e.g., [5]). For the second case, the axioms rely on work of Cherlin,
Shelah, and Shi [2], and Patel [6].

Let |̂ f and |̂ d denote the ternary relations on M given by nonforking in-
dependence and nondividing independence, respectively, for complete types. The
following is our main result.

Theorem 3. Let T be a free amalgamation theory with disintegrated algebraic

closure. Given A,B,C ⊂M, we have A |̂ f
C
B if and only if A |̂ d

C
B.

In [3], the above result is shown for the special case that T is the theory of the
generic Kn-free graph, for n ≥ 3. Our proof of Theorem 3 generalizes the strategy
from [3]. In particular, the main tool is the following “mixed transitivity” lemma.

Lemma 4. Let T be a free amalgamation theory with disintegrated algebraic closure.
Suppose A,B,C,D ⊂M are such that D ⊆ C ⊆ B and C,D are closed. Then

A |̂ d
D
C and acl(AC) |̂

C
B ⇒ A |̂ d

D
B.

Proof. Assume A |̂ d
D
C and acl(AC) |̂

C
B. Enumerate B = b = (bi : i ∈ I).

Assume I0 ⊆ J are initial segments of I such that D = (bi : i ∈ I0) and C =
c = (bi : i ∈ J). Let (bn)n<ω be a D-indiscernible sequence, with b0 = b̄. Let a
enumerate A. We want to find a′ such that a′bn ≡D ab for all n < ω.

For n < ω, let cn = (bni : i ∈ J), and note that (cn)n<ω is D-indiscernible with
c0 = c. There is some I1 such that I0 ⊆ I1 ⊆ J and, for all m ≤ n < ω and
i ∈ J , cmi = cni if and only if i ∈ I1. If D′ = (bi : i ∈ I0), then D′ is closed,

D ⊆ D′ ⊆ C and so, by base monotonicity for |̂ d, we have A |̂ d
D′
C. Note also

that (bn)n<ω and (cn)n<ω are each D′-indiscernible. Altogether, we may assume

without loss of generality that I1 = I0 and D′ = D. Since A |̂ d
D
C, there is a∗

such that a∗c
n ≡D ac for all n < ω.

Set C∗ = acl(c<ω). By full existence for |̂ , there is a′ ≡C∗ a∗ such that

acl(a′C∗) |̂ C∗ b
<ω. For each n < ω, we have a′cn ≡D a∗c

n ≡D ac. By monotonic-

ity, acl(a′cn) |̂
C∗
bn for all n < ω.

Claim: For any n < ω, C∗ ∩ acl(a′cn)bn = cn.
Proof : Since algebraic closure in T is disintegrated, we have acl(a′cn) = acl(a′)cn

and C∗ = c<ω. So it suffices to show c<ω ∩ acl(a′)bn = cn. Fix some x ∈ c<ω ∩
acl(a′)bn. There is m < ω and i ∈ J such that x = bmi . Suppose first that

x ∈ acl(a′). Then bmi ∈ acl(a′) ∩ cm, which means bi ∈ acl(a) ∩ c. Since A |̂ d
D
C,

we have acl(a)∩ c ⊆ D, and so i ∈ I0. Thus bmi = bni ∈ cn. Finally, suppose x ∈ bn.
There is j ∈ I such that bmi = bnj . It follows that bmi = bni (if m = n this is trivial,
and if m 6= n use bmi = bnj and indiscernibility). So x = bni ∈ cn. aclaim

To finish the proof, we show a′bn ≡D ab for all n < ω. So fix n < ω, and
let σ ∈ Aut(M/D) be such that σ(bn) = b (note that σ(cn) = c). By the claim
and freedom, we have acl(a′cn) |̂

cn
bn. So acl(σ(a′)c) |̂

c
b by invariance, and

since σ(acl(a′cn)) = acl(σ(a′)c). Also, we have σ(a′)c ≡D a′cn ≡D ac, and so
σ(a′)c ≡c ac. Therefore acl(σ(a′)c) ≡c acl(ac). So we may fix tuples e and e′
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such that acl(ac) = ace, acl(σ(a′)c) = σ(a′)ce′, and ace ≡c σ(a′)ce′. We have
σ(a′)ce′ |̂

c
b and, by assumption, ace |̂

c
b. Since c ⊆ ace ∩ b, we may apply

stationarity to conclude aceb ≡c σ(a′)ce′b. In particular, a′bn ≡D σ(a′)b ≡D ab. �

The proof of the main result now follows rather quickly.

Proof of Theorem 3. It suffices to show |̂ d satisfies extension, i.e, if A |̂ d
C
B and

B̂ ⊇ B then there is A′ ≡BC A such that A′ |̂ d
C
B̂ (see [1]). Recall also that, given

A,B,C ⊂ M, we have A |̂ d
C
B if and only if acl(AC) |̂ d

acl(C)
acl(BC) (again, see

[1]). Altogether, to prove the result it suffices to fix closed A,B, B̂, C ⊂ M such

that C ⊆ B ⊆ B̂ and A |̂ d
C
B, and find A′ ≡B A such that A′ |̂ d

C
B̂.

Let |̂ witness that T is a free amalgamation theory. By full existence there is A′

such that A′ ≡B A and acl(A′B) |̂
B
B̂. By invariance of |̂ d, we have A′ |̂ d

C
B.

By Lemma 4, A′ |̂ d
C
B̂, as desired. �

Remark 5. In the case that acl(A) = A for all A ⊂ M (e.g. Example 2(1)), the
statement of Lemma 4 is equivalent to: if D ⊆ C ⊆ B then

A |̂ d
D
C and A |̂

C
B ⇒ A |̂ d

D
B.

Since |̂ implies |̂ d (see [4]), this can be seen as a weakening of transitivity for

|̂ d. It is worth noting that many examples of such theories are not simple (e.g.

the theory of the generic Kn-free graph for n ≥ 3), and so transitivity fails for |̂ d
in such examples.

Remark 6. Given n ≥ 3, let Tn be the theory of the generic Kn-free graph. In [3],

|̂ d is characterized for Tn by purely combinatorial properties of graphs. It would

be interesting to give similar descriptions of |̂ d for other theories in Example 2.
It is also shown in [3] that forking and dividing are not the same for formulas in
Tn. Thus Theorem 3 cannot be strengthened to formulas.

Question 7. Does Theorem 3 hold without the assumption of disintegrated alge-
braic closure, or under the weaker assumption that algebraic closure is modular?
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