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The Erdős–Renyi construction

For each n ∈ ω, build a graph with domain [n] = {0, . . . , n− 1}:

For each pair i < j, flip a fair coin.

Set iEj iff the coin comes up heads.

This is the Erdős–Renyi process G(n, 1/2).

Let G(n) be the set of all graphs with domain [n].

We obtain each graph with probability 2−(n2).
So G(n, 1/2) corresponds to the uniform measure on G(n).
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The random graph

There is also an infinite Erdős–Renyi process G(ω, 1/2): Flip countably
many coins, one for each pair i < j < ω.

G(ω, 1/2) builds a single graph up to isomorphism with probability 1:
The (Rado) random graph R.

Extension property E(A,B)

For any two disjoint finite sets A,B ⊆ ω, there is a vertex c ∈ ω such that
cEa for all a ∈ A and ¬cEb for all b ∈ B.

Each instance E(A,B) of the extension property is satisfied with
probability 1 in G(ω, 1/2).

By a back-and-forth argument, R is the unique countable graph satisfying
all the extension properties up to isomorphism.

Alex Kruckman, IU Bloomington The convergence of three notions of limit for finite structures



The random graph
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The random graph

R also arises naturally in (at least) two other ways:

R is the Fräıssé limit of the class of finite graphs.

The class of finite graphs has a logical zero-one law (for the uniform
measures), and R is the unique countable model for the limit theory.
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Fräıssé classes

Conventions: L is always a finite relational language. I allow empty
structures.

A Fräıssé class is a class K of finite L-structures, such that

1 K is closed under isomorphism.

2 K is closed under substructure (hereditary property).

3 K has the amalgamation property (2-amalgamation):

D

A

>>

B

``

C

`` >>
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Fräıssé limits
Let K be a Fräıssé class.
There is a countable structure MK , the Fräıssé limit of K, satisfying:

1 Universality: K is the class of finite substructures of MK .
2 Homogeneity: Any isomorphism between finite substructures of MK

extends to an automorphism of MK .

Moreover, MK is unique up to isomorphism.

Let TK = Th(MK), the generic theory of K.
TK is ℵ0-categorical and has quantifier elimination.

Here is an axiomatization:
1 Universal axioms. For every finite structure A /∈ K,

∀x¬θA(x).

2 Extension axioms. For all A ⊆ B in K with |B| = |A|+ 1,

∀x ∃y (θA(x)→ θB(x, y)).

Here θC is the conjunction of the atomic diagram of the structure C.
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The zero-one law for finite graphs
Let µn(= G(n, 1/2)) be the uniform measure on G(n).
For any sentence ϕ, and any n, let [ϕ]G(n) = {G ∈ G(n) | G |= ϕ}.

Then for any ϕ ∈ Th(R) = TG ,

lim
n→∞

µn([ϕ]G(n)) = 1.

We say that Th(R) is the almost-sure theory of (G(n), µn)n∈ω.

More generally, if (Xn, µn)n∈ω is any sequence such that µn is a
probability measure on a space Xn of finite L-structures, we say that:

(µn)n∈ω has a zero-one law if for every sentence ϕ,

lim
n→∞

µn([ϕ]Xn) = 0 or 1.

If (µn)n∈ω has a zero-one law,

T a.s. = {ϕ | lim
n→∞

µn([ϕ]Xn) = 1}

is the almost-sure theory of (µn)n∈ω.
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The case of linear orders

Generic theories and almost-sure theories do not agree in general.

The class L of finite linear orders is a Fräıssé class.
Fräıssé limit: ML = (Q,≤).
Generic theory: TL = DLO (dense linear orders without endpoints).
Almost-sure theory: Infinite discrete linear orders with endpoints.

Definition

A theory T is pseudofinite if every sentence ϕ ∈ T has a finite model.

DLO is not pseudofinite: Consider (∃x>) ∧ (∀y ∃z (y < z)).

But any almost-sure theory is pseudofinite: every sentence has many
finite models (in a sense measured by the µn).
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The case of triangle-free graphs

The class G4 of finite triangle-free graphs is a Fräıssé class.
Fräıssé limit: MG4 = H, the Henson graph.
Generic theory: TG4 = Th(H).

Theorem (Kolaitis–Prömel–Rothschild)

The sequence (µn)n∈ω of uniform measures on G4(n) has a zero-one law.
T a.s. is the generic theory of bipartite graphs.

Hence T a.s. 6= TG4 , e.g. since H contains cycles of length 5.

So the uniform measures give the wrong answer. What about other
sequences of measures?
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Cherlin’s question

Question (Cherlin)

Is the generic theory TG4 of triangle-free graphs pseudofinite?

This question appears to be very difficult!

For example, it is open whether there are finite triangle-free graphs
satisfying the extension axioms over all base graphs of size 4.

It seems likely that for some ϕ ∈ TG4 , the finite models of ϕ are sporadic:

Only occur in certain sizes,

Or must have a very regular structure,

Or no finite models at all!

In contrast, for all ϕ ∈ TG , the finite models of ϕ are extremely common.
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Making Cherlin’s question easier

Question

Does TG4 arise as the almost-sure theory for some reasonable sequence of
measures (µn)n∈ω?

What does reasonable mean?

Requiring the µn to be uniform measures on G4(n) is too strong.

But we need some assumptions: We don’t want to allow each µn to
give measure 1 to a single graph Gn in some sporadic family.

In this talk, I will focus on one possible meaning of reasonable.
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Coherent measures
StrL(n) is the set of all L-structures with domain [n].
For any formula ϕ(x) and any tuple a from [n], define

[ϕ(a)]n = {M ∈ StrL(n) |M |= ϕ(a)}.

Definition

(µn)n∈ω is coherent if each µn is a probability measure on StrL(n), and:

1 For all ϕ(x) quantifier-free, all a from [n], and all n ≤ m,
µn([ϕ(a)]n) = µm([ϕ(a)]m).

2 For all ϕ(x) quantifier-free, all a from [n], and all σ ∈ Sn,
µn([ϕ(a)]n) = µn([ϕ(σ(a))]n).

3 For all ϕ(x) and ψ(y) quantifier-free and a and b disjoint from [n],
µn([ϕ(a) ∧ ψ(b)]n) = µn([ϕ(a)]n)µn([ψ(b)]n).

Motivation: The Erdős–Renyi constructions G(n, 1/2), which cohere to a
random construction G(ω, 1/2) of countably infinite graphs.
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Measures on StrL(ω)
StrL(ω) is the space of all L-structures with domain ω.

The topology on StrL(ω) is generated by basic clopen sets of the form

[ϕ(a)] = {M ∈ StrL(ω) |M |= ϕ(a)}

where ϕ(x) is a quantifier-free formula and a is a tuple from ω.

A Borel probability measure on StrL(ω) is determined by the measure of
each finite conjunction of atomic and negated atomic formulas (and we
always have µ([a = b]) = 0 when a 6= b).

In the case of the Erdős-Renyi construction, for example,

µ

( m∧
i=1

aiEbi

)
∧

 n∧
j=1

¬ajEbj

 =

(
1

2

)m+n

.

Alex Kruckman, IU Bloomington The convergence of three notions of limit for finite structures



Measures on StrL(ω)
StrL(ω) is the space of all L-structures with domain ω.

The topology on StrL(ω) is generated by basic clopen sets of the form

[ϕ(a)] = {M ∈ StrL(ω) |M |= ϕ(a)}

where ϕ(x) is a quantifier-free formula and a is a tuple from ω.

A Borel probability measure on StrL(ω) is determined by the measure of
each finite conjunction of atomic and negated atomic formulas (and we
always have µ([a = b]) = 0 when a 6= b).
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Measures on StrL(ω)

Definition

(µn)n∈ω is coherent if each µn is a probability measure on StrL(n), and:

1 For all ϕ(x) quantifier-free, all a from [n], and all n ≤ m,
µn([ϕ(a)]n) = µm([ϕ(a)]m).

2 For all ϕ(x) quantifier-free, all a from [n], and all σ ∈ Sn,
µn([ϕ(a)]n) = µn([ϕ(σ(a))]n).

3 For all ϕ(x) and ψ(y) quantifier-free and a and b disjoint from [n],
µn([ϕ(a) ∧ ψ(b)]n) = µn([ϕ(a)]n)µn([ψ(b)]n).

By condition (1), a coherent sequence induces a Borel probability measure
on StrL(ω).

Example: The sequence (G(n, 1/2))n∈ω induces G(ω, 1/2) on StrL(ω).
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Invariant measures

The space StrL also comes equipped with a natural action of S∞, the
permutation group of ω.

σ ∈ S∞ acts on a structure M with domain ω by permuting the domain:

σ(M) |= R(a) ⇐⇒ M |= R(σ−1(a))

Note:

If N = σ(M), then σ : M → N is an isomorphism.

The orbit of M is Iso(M) = {N ∈ StrL(ω) |M ∼= N}.

To show that a Borel probability measure on StrL(ω) is invariant for the
action of S∞, it suffices to check:

µ([ϕ(a)]) = µ([ϕ(σ(a))])

for all quantifier-free ϕ(x), a ∈ ω, and σ ∈ S∞.
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Invariant measures

Definition
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Quantifier-free limits of finite structures
Convention: I will refer to S∞-invariant Borel probability measures on
StrL(ω) simply as invariant measures.

Definition

Let A be a finite structure, and let ϕ(x) be a quantifier-free formula

in n free variables. Define P (ϕ;A) = |{a∈An|A|=ϕ(a)}|
|A|n .

A sequence (An)n∈ω of finite structures with limn→∞ |An| =∞
q.f.-converges if limn→∞ P (ϕ;An) exists for all quantifier-free ϕ.

Such a convergent sequence assigns a limiting probability to every
quantifier-free formula. There is a unique invariant measure µ on
StrL(ω) which encodes these limiting probabilities, and we say
(An)n∈ω q.f.-converges to µ.

Example: The Paley graphs (F×q , {(x, y) | ∃z, z2 = x− y}) for q a prime
power, q ≡ 1 (mod 4), q.f.-converge to G(ω, 1/2).

This is the kind of convergence captured by graph limits / graphons.
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Ergodic structures

Fact

For an invariant measure µ on StrL(ω), the following are equivalent:

1 There is a sequence of finite L-structures, (An)n∈ω which
q.f.-converges to µ.

2 For any quantifier-free formulas ϕ(x) and ψ(y) and any disjoint
tuples a and b from ω,

µ([ϕ(a) ∧ ψ(b)]) = µ([ϕ(a)])µ([ψ(b)])

3 µ is ergodic for the action of S∞ (i.e. if X is a Borel set such that
µ(X4σ(X)) = 0 for all σ ∈ S∞, then µ(X) = 0 or 1).

Definition (Ackerman–Freer–K.–Patel)

An ergodic structure is an invariant measure on StrL(ω) which satisfies
the three equivalent conditions in the fact.
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Ergodic structures

Definition

(µn)n∈ω is coherent if each µn is a probability measure on StrL(n), and:

1 For all ϕ(x) quantifier-free, all a from [n], and all n ≤ m,
µn([ϕ(a)]n) = µm([ϕ(a)]m).

2 For all ϕ(x) quantifier-free, all a from [n], and all σ ∈ Sn,
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3 For all ϕ(x) and ψ(y) quantifier-free and a and b disjoint from [n],
µn([ϕ(a) ∧ ψ(b)]n) = µn([ϕ(a)]n)µn([ψ(b)]n).

By condition (3), the invariant measure on StrL(ω) induced by a coherent
sequence is an ergodic structure.
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More on ergodic structures

Not all ergodic structures concentrate on Fräıssé limits:

Theorem (Ackerman–Freer–Patel)

Let M be a countable structure. The following are equivalent:

1 M has trivial (group-theoretic) acl: For every finite tuple a from M
and every b ∈M , there is an automorphism σ ∈ Aut(M) such that
σ(a) = a and σ(b) 6= b.

2 There is an invariant measure on StrL(ω) such that µ(Iso(M)) = 1.

3 There is an ergodic structure such that µ(Iso(M)) = 1.

Not all ergodic structures give measure 1 to a single isomorphism class:

In joint work with Ackerman, Freer, & Patel (Properly Ergodic Structures)
we characterized theories T such that there exists an ergodic structure µ
with µ(Mod(T )) = 1 but µ(Iso(M)) = 0 for all M |= T .
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Strongly pseudofinite theories

Definition

A theory T is strongly pseudofinite if:

1 There is a Fräıssé class K such that T = TK .

2 There is a coherent sequence of measures (µn)n∈ω which has a
zero-one law, and T a.s. = T .

“The generic theory TK is pseudofinite witnessed by a zero-one law for a
reasonable sequence of measures.”

Fact (Hill)

It follows from (1) and (2) that if µ is the ergodic structure induced by
(µn)n∈ω, then µ(Iso(MK)) = 1.

In other words, all three of our limit notions coincide on T .

Example: Th(R) is strongly pseudofinite.
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Strong pseudofiniteness and full amalgamation

Theorem (K.)

If K is a Fräıssé class with full amalgamation, TK is strongly pseudofinite.

Fact

If T is strongly pseudofinite, and T ′ is a reduct of T which is also the
generic theory of a Fräıssé class, then T ′ is strongly pseudofinite.

Examples:
1 Directed graphs, hypergraphs, directed hypergraphs
2 Bipartite graphs (with the partition named by unary predicates)
3 Simplicial complexes (where n-cells are instances of n-ary relations)
4 3-hypergraphs in which every tetrahedron has an even number of faces

(this is a reduct of the random graph which lacks full amalgamation)

Question

Is every strongly pseudofinite theory a reduct of the generic theory of a
Fräıssé class with full amalgamation?
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(this is a reduct of the random graph which lacks full amalgamation)

Question

Is every strongly pseudofinite theory a reduct of the generic theory of a
Fräıssé class with full amalgamation?
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Disjoint n-amalgamation

Notation: P−([n]) = P([n]) \ {[n]}.
We view P−([n]) and P([n]) as poset categories with a unique arrow
X → Y if and only if X ⊆ Y .

Let K be a Fräıssé class, viewed as a category where arrows are
embeddings.

A functor F from P−([n]) or P([n]) to K preserves disjointness if for all
Z in the domain category of F and all X,Y ⊆ Z, the images of F (X)
and F (Y ) in F (Z) are disjoint over the image of F (X ∩ Y ) in F (Z).

K has disjoint n-amalgamation if every functor F : P−([n])→ K which
preserves disjointness can be extended to a functor F̂ : P−([n])→ K
which preserves disjointness.

K has full amalgamation if it has disjoint n-amalgamation for all n ∈ ω.
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Disjoint 2-amalgamation

Disjoint 2-amalgamation is often called “strong amalgamation”:

A{0,1}

A{0}

f ′ ;;

A{1}

g′
cc

A∅

f

cc

g

;;

...and f ′(A{0}) ∩ g′(A{1}) = f ′(f(A∅)) = g′(g′(A∅)) in D.

Fact

A Fräıssé class has disjoint 2-amalgamation if and only if its generic theory
TK has trivial (group-theoretic) definable closure, equivalently trivial
(model-theoretic) algebraic closure.
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Disjoint 3-amalgamation

A{0,1,2}

A{0,1}

::

A{0,2}

OO

A{1,2}

dd

A{0}

OO ::

A{1}

dd ::

A{2}

dd OO

A∅

dd OO ::

Examples of failure: Let AX = {ai | i ∈ X}:
K = finite triangle-free graphs. a1Ea2, a2Ea3, a1Ea3.

K = finite partial orders. a1 < a2, a2 < a3, a3 < a1.

K = finite equivalence relations. a1Ea2, a2Ea3, ¬a1Ea3.
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A random construction

Theorem (K.)

If K is a Fräıssé class with full amalgamation, TK is strongly pseudofinite.

It suffices to define a coherent sequence of measures (µn)n∈ω which has a
zero-one law with T a.s. = TK .

I will describe these measures as random constructions of a L-structures
with domain [n] for every n, built “from the bottom up”.
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A random construction

Theorem (K.)

If K is a Fräıssé class with full amalgamation, TK is strongly pseudofinite.

First, pick the atomic diagram of each element, uniformly at random from
those consistent with K.
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A random construction

Theorem (K.)

If K is a Fräıssé class with full amalgamation, TK is strongly pseudofinite.

Next, pick the atomic diagram of each pair, uniformly at random from
those consistent with K and extending the atomic diagrams assigned to
the singletons (disjoint 2-amalgamation implies that the set of choices is
non-empty).
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A random construction

Theorem (K.)

If K is a Fräıssé class with full amalgamation, TK is strongly pseudofinite.

Continue in this way, assigning the atomic diagram of each subset of size
n uniformly at random from those consistent with K extending the
diagrams assigned to the subsets of size n− 1.

Full amalgamation ensures that we never get stuck, and that all choices
could be made as independently as possible.
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The zero-one law

It remains to show that the µn have a zero-one law with T a.s. = TK .
The proof is a simple generalization of the proof of the zero-one law for
finite graphs.

We have described a sequence of measures µn on StrL(n).

Since we always build structures in K, it suffices to show that
limn→∞ µn([ϕ]n) = 1 when ϕ is an extension axiom

∀x ∃y (θA(x)→ θB(x, y)).

For any a from [n], if θA(a), then for any other b, there is a positive
probability ε > 0 that θB(a, b).

Conditioned on [θA(a)], for b 6= b′ not in a, [θB(a, b)] and [θB(a, b′)]
are independent. So the conditional probability of [¬∃y θB(a, b)] is
(1− ε)n−|A|.
So µn([¬ϕ]n) ≤ n|A|(1− ε)n−|A| → 0 as n→∞.
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The Aldous–Hoover–Kallenberg representation
To understand strongly pseudofinite theories, we need to understand the
role of the limiting ergodic structure.
Key tool: a vast generalization of de Finetti’s theorem.

Setup:

(ξA)A∈Pfin(ω) independent random variables, uniform on [0, 1].

View a non-redundant tuple a0, . . . , an−1 ∈ ω as an injective function
i : [n]→ ω.

Denote by ξ̂a the family of random variables (ξi[X])X∈P([n]).

Definition

An AHK system is a collection of measurable functions

(fn : [0, 1]P([n]) → StrL(n))n∈ω

satisfying some coherence conditions.
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The Aldous–Hoover–Kallenberg representation

Definition

An AHK system is a collection of measurable functions

(fn : [0, 1]P([n]) → StrL(n))n∈ω

satisfying some coherence conditions.

An AHK system allows us to define a structure in StrL(ω) at random, by
defining the induced structure on a tuple a of length n to be fn(ξ̂a).
The coherence conditions ensure that this is well-defined.

Definition

If µ is the induced probability measure on StrL(ω), we say (fn)n∈ω is an
AHK representation of µ.

Theorem (Aldous, Hoover, Kallenberg (in different contexts))

Every invariant probability measure µ on StrL has an AHK representation.

Alex Kruckman, IU Bloomington The convergence of three notions of limit for finite structures



The Aldous–Hoover–Kallenberg representation

Definition

An AHK system is a collection of measurable functions

(fn : [0, 1]P([n]) → StrL(n))n∈ω

satisfying some coherence conditions.

An AHK system allows us to define a structure in StrL(ω) at random, by
defining the induced structure on a tuple a of length n to be fn(ξ̂a).
The coherence conditions ensure that this is well-defined.

Definition

If µ is the induced probability measure on StrL(ω), we say (fn)n∈ω is an
AHK representation of µ.

Theorem (Aldous, Hoover, Kallenberg (in different contexts))

Every invariant probability measure µ on StrL has an AHK representation.

Alex Kruckman, IU Bloomington The convergence of three notions of limit for finite structures



The ergodic case

If a and b are tuples with intersection c, then fn(ξ̂a) and fm(ξ̂b) are

conditionally independent over ξ̂c (“hidden information at c”).

Ergodicity corresponds to “no hidden information at ∅”.

Theorem (Aldous, for exchangeable arrays)

Let µ be an invariant measure on StrL(ω). The following are equivalent:

1 µ is an ergodic structure (recall: ergodic for the action of S∞).

2 µ is “dissociated”: For any quantifier-free formulas ϕ(x) and ψ(y)
and any disjoint tuples a and b from ω,

µ([ϕ(a) ∧ ψ(b)]) = µ([ϕ(a)])µ([ψ(b)]).

3 µ has an AHK representation which does not depend on ξ∅.
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Idea of a proof
Following Austin On exchangeable random variables and the statistics of
large graphs and hypergraphs, but translated to the setting of L-structures.

Let Ω be a disjoint copy of ω.

By a bijection ω → ω ∪Ω, transfer µ to a measure µ̂ on StrL(ω ∪Ω).

Pick a structure M∅ with domain Ω according to µ̂ (ξ∅).

For each a ∈ ω, pick a structure M{a} with domain {a} ∪Ω according
to µ̂, conditionally independently over M∅ (ξ{a}).

Continue building from the bottom up: For each A ⊆fin ω, pick a
structure MA with domain A ∪ {Ω} according to µ̂, conditionally
independently over the (MB)B(A for all A ⊆fin ω (ξA).

Show by induction that this process agrees with µ̂ at every stage.

By invariance, the random substructure with domain ω agrees with µ.

Use standard probability theory tricks to replace all random choices
above with random variables on [0, 1].
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The case of graphons
Suppose L = {E} and µ is an ergodic structure giving measure 1 to the
class of graphs. Let (fn)n∈ω be an AHK representation for µ.

The language is binary, so fn is irrelevant for n ≥ 3.

There is only one graph each of size 0 and size 1, so f0 and f1 are
irrelevant.

µ is ergodic, so f2 does not depend on ξ∅.

For a, b ∈ ω, f2(ξ{a}, ξ{b}, ξ{a,b}) says either “edge” or “no edge”.

The actual value of ξ{a,b} is irrelevant: what matters is probability p,
given ξ{a}, ξ{b} ∈ [0, 1] that f2(ξ{a}, ξ{b}, ξ{a,b}) = “edge”.

Set f̂(ξ{a}, ξ{b}) = p.

f̂ is a graphon: a (a.s.) symmetric measurable function [0, 1]2 → [0, 1].

AHK representations are the proper generalization of graphons to general
relational languages. In specific cases, they can be simplified by an
analysis like the above.
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MS-Measurability

The rest of this talk is about on-going work with Cameron Hill.

Definition

An AHK system (fn)n∈ω is fully independent if whenever a and b are
tuples intersecting in c, then fn(ξ̂a) and fm(ξ̂b) are conditionally

independent over fk(ξ̂c).

Slogan: “No hidden information anywhere”.

Theorem (Hill-K.)

If T is strongly pseudofinite, and the witnessing ergodic structure µ has a
fully independent AHK representation, then T is MS-measurable.
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Simplicity

Conjecture (Hill-K.)

If T is strongly pseudofinite, then T has trivial forking:

A |̂f
C

B ⇐⇒ A ∩B ⊆ C.

In particular, it would follow that:

Every strongly pseudofinite theory is simple of SU-rank 1.

The generic theory TG4 of triangle-free graphs is not strongly
pseudofinite.

Theorem (Hill-K.)

The theory of an equivalence relation with infinitely many infinite classes is
not strongly pseudofinite.
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Counterexample: equivalence relations

Let M be the equivalence relation with infinitely many infinite classes.
Suppose for contradiction that T = Th(M) is strongly pseudofinite,
witnessed by (µn)n∈ω which cohere to µ.

Any AHK representations of µ essentially has the following form:
I Fix (pi)i∈ω with 0 < pi < 1 and

∑
i∈ω pi = 1.

I The randomness at the level of a singleton {a} puts a in an
equivalence class Ci with probability pi.

I No randomness at the level of pairs (or higher).
I (In particular, this is a {0, 1}-valued graphon.)

There is some k > 1 such that limn→∞ µn([∀x∃≥ky xEy]n) 6= 1.
I It suffices to show that there is some ε > 0 such that for any N there

is some n ≥ N such that µn([∀x∃≥ky xEy]n) < 1− ε.
I Fix a small ε. Pick pi small enough so that for some n ≥ N ,
npi ≈ k/2. This is the expected number of elements in the class Ci.

I By a Chernoff bound argument, the µn-probability that Ci has at least
one but less than k elements is at least ε.

(e.g. k = 10, ε = 1/10 works)
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