The convergence of three notions of limit for finite structures

Alex Kruckman

Indiana University, Bloomington

Workshop on model theory of finite and pseudofinite structures & Logic seminar

University of Leeds 11 April, 2018

Outline

Introput the set of the set of

- Random construction
- Fraïssé limit
- Zero-one law
- A definition: Strongly pseudofinite theories
- S A sufficient condition: Total amalgamation classes
- A tool: The Aldous-Hoover-Kallenberg representation
- Onsequences and questions (work in progress, joint with C. Hill)

The Erdős-Renyi construction

For each $n \in \omega$, build a graph with domain $[n] = \{0, \dots, n-1\}$:

- For each pair i < j, flip a fair coin.
- Set *iEj* iff the coin comes up heads.

This is the Erdős–Renyi process G(n, 1/2).

The Erdős-Renyi construction

For each $n \in \omega$, build a graph with domain $[n] = \{0, \dots, n-1\}$:

- For each pair i < j, flip a fair coin.
- Set *iEj* iff the coin comes up heads.

This is the Erdős–Renyi process G(n, 1/2).

Let $\mathcal{G}(n)$ be the set of all graphs with domain [n].

We obtain each graph with probability $2^{-\binom{n}{2}}$. So G(n, 1/2) corresponds to the uniform measure on $\mathcal{G}(n)$.

The random graph

There is also an infinite Erdős–Renyi process $G(\omega, 1/2)$: Flip countably many coins, one for each pair $i < j < \omega$.

 $G(\omega, 1/2)$ builds a single graph up to isomorphism with probability 1: The (Rado) random graph \mathcal{R} .

The random graph

There is also an infinite Erdős–Renyi process $G(\omega, 1/2)$: Flip countably many coins, one for each pair $i < j < \omega$.

 $G(\omega, 1/2)$ builds a single graph up to isomorphism with probability 1: The (Rado) random graph \mathcal{R} .

Extension property E(A, B)

For any two disjoint finite sets $A, B \subseteq \omega$, there is a vertex $c \in \omega$ such that cEa for all $a \in A$ and $\neg cEb$ for all $b \in B$.

Each instance E(A,B) of the extension property is satisfied with probability 1 in $G(\omega, 1/2)$.

By a back-and-forth argument, ${\cal R}$ is the unique countable graph satisfying all the extension properties up to isomorphism.

 ${\cal R}$ also arises naturally in (at least) two other ways:

- \mathcal{R} is the Fraïssé limit of the class of finite graphs.
- The class of finite graphs has a logical zero-one law (for the uniform measures), and \mathcal{R} is the unique countable model for the limit theory.

Fraïssé classes

Conventions: L is always a finite relational language. I allow empty structures.

A Fraissé class is a class K of finite L-structures, such that

- It is closed under substructure (hereditary property).
- \bullet K has the amalgamation property (2-amalgamation):

Fraïssé limits

Let K be a Fraïssé class.

There is a countable structure M_K , the *Fraissé limit* of K, satisfying:

- **(**) Universality: K is the class of finite substructures of M_K .
- **2** Homogeneity: Any isomorphism between finite substructures of M_K extends to an automorphism of M_K .

Moreover, M_K is unique up to isomorphism.

Fraïssé limits

Let K be a Fraïssé class.

There is a countable structure M_K , the *Fraïssé limit* of K, satisfying:

- **(**) Universality: K is the class of finite substructures of M_K .
- ⁽²⁾ Homogeneity: Any isomorphism between finite substructures of M_K extends to an automorphism of M_K .

Moreover, M_K is unique up to isomorphism.

Let $T_K = Th(M_K)$, the generic theory of K. T_K is \aleph_0 -categorical and has quantifier elimination.

Here is an axiomatization:

1 Universal axioms. For every finite structure $A \notin K$,

$$\forall \overline{x} \, \neg \theta_A(\overline{x}).$$

2 Extension axioms. For all $A \subseteq B$ in K with |B| = |A| + 1,

$$\forall \overline{x} \, \exists y \, (\theta_A(\overline{x}) \to \theta_B(\overline{x}, y)).$$

Here θ_C is the conjunction of the atomic diagram of the structure C.

The zero-one law for finite graphs

Let $\mu_n (= G(n, 1/2))$ be the uniform measure on $\mathcal{G}(n)$. For any sentence φ , and any n, let $[\varphi]_{\mathcal{G}(n)} = \{G \in \mathcal{G}(n) \mid G \models \varphi\}$.

The zero-one law for finite graphs

Let $\mu_n (= G(n, 1/2))$ be the uniform measure on $\mathcal{G}(n)$. For any sentence φ , and any n, let $[\varphi]_{\mathcal{G}(n)} = \{G \in \mathcal{G}(n) \mid G \models \varphi\}.$

Then for any $\varphi \in \operatorname{Th}(\mathcal{R}) = T_{\mathcal{G}}$,

$$\lim_{n \to \infty} \mu_n([\varphi]_{\mathcal{G}(n)}) = 1.$$

We say that $\operatorname{Th}(\mathcal{R})$ is the *almost-sure theory* of $(\mathcal{G}(n), \mu_n)_{n \in \omega}$.

The zero-one law for finite graphs

Let $\mu_n (= G(n, 1/2))$ be the uniform measure on $\mathcal{G}(n)$. For any sentence φ , and any n, let $[\varphi]_{\mathcal{G}(n)} = \{G \in \mathcal{G}(n) \mid G \models \varphi\}.$

Then for any $\varphi \in \operatorname{Th}(\mathcal{R}) = T_{\mathcal{G}}$,

$$\lim_{n \to \infty} \mu_n([\varphi]_{\mathcal{G}(n)}) = 1.$$

We say that $\operatorname{Th}(\mathcal{R})$ is the *almost-sure theory* of $(\mathcal{G}(n), \mu_n)_{n \in \omega}$.

More generally, if $(X_n, \mu_n)_{n \in \omega}$ is any sequence such that μ_n is a probability measure on a space X_n of finite *L*-structures, we say that:

• $(\mu_n)_{n\in\omega}$ has a *zero-one law* if for every sentence φ ,

$$\lim_{n \to \infty} \mu_n([\varphi]_{X_n}) = 0 \text{ or } 1.$$

• If $(\mu_n)_{n\in\omega}$ has a zero-one law,

$$T^{\text{a.s.}} = \{ \varphi \mid \lim_{n \to \infty} \mu_n([\varphi]_{X_n}) = 1 \}$$

is the almost-sure theory of $(\mu_n)_{n\in\omega}$.

The case of linear orders

Generic theories and almost-sure theories do not agree in general.

The class \mathcal{L} of finite linear orders is a Fraïssé class. Fraïssé limit: $M_{\mathcal{L}} = (\mathbb{Q}, \leq)$. Generic theory: $T_{\mathcal{L}} = \text{DLO}$ (dense linear orders without endpoints). Almost-sure theory: Infinite discrete linear orders with endpoints.

The case of linear orders

Generic theories and almost-sure theories do not agree in general.

The class \mathcal{L} of finite linear orders is a Fraïssé class. Fraïssé limit: $M_{\mathcal{L}} = (\mathbb{Q}, \leq)$. Generic theory: $T_{\mathcal{L}} = \text{DLO}$ (dense linear orders without endpoints). Almost-sure theory: Infinite discrete linear orders with endpoints.

Definition

A theory T is *pseudofinite* if every sentence $\varphi \in T$ has a finite model.

- DLO is not pseudofinite: Consider $(\exists x \top) \land (\forall y \exists z (y < z)).$
- But any almost-sure theory is pseudofinite: every sentence has many finite models (in a sense measured by the μ_n).

The case of triangle-free graphs

The class \mathcal{G}_{\triangle} of finite triangle-free graphs is a Fraïssé class. Fraïssé limit: $M_{\mathcal{G}_{\triangle}} = \mathcal{H}$, the Henson graph. Generic theory: $T_{\mathcal{G}_{\triangle}} = \operatorname{Th}(\mathcal{H})$.

The case of triangle-free graphs

The class \mathcal{G}_{\triangle} of finite triangle-free graphs is a Fraïssé class. Fraïssé limit: $M_{\mathcal{G}_{\triangle}} = \mathcal{H}$, the Henson graph. Generic theory: $T_{\mathcal{G}_{\triangle}} = \operatorname{Th}(\mathcal{H})$.

Theorem (Kolaitis-Prömel-Rothschild)

The sequence $(\mu_n)_{n \in \omega}$ of uniform measures on $\mathcal{G}_{\triangle}(n)$ has a zero-one law. $T^{\text{a.s.}}$ is the generic theory of bipartite graphs.

Hence $T^{\text{a.s.}} \neq T_{\mathcal{G}_{\wedge}}$, e.g. since \mathcal{H} contains cycles of length 5.

The case of triangle-free graphs

The class \mathcal{G}_{\triangle} of finite triangle-free graphs is a Fraïssé class. Fraïssé limit: $M_{\mathcal{G}_{\triangle}} = \mathcal{H}$, the Henson graph. Generic theory: $T_{\mathcal{G}_{\triangle}} = \operatorname{Th}(\mathcal{H})$.

Theorem (Kolaitis-Prömel-Rothschild)

The sequence $(\mu_n)_{n\in\omega}$ of uniform measures on $\mathcal{G}_{\triangle}(n)$ has a zero-one law. $T^{\text{a.s.}}$ is the generic theory of bipartite graphs.

Hence $T^{\text{a.s.}} \neq T_{\mathcal{G}_{\wedge}}$, e.g. since \mathcal{H} contains cycles of length 5.

So the uniform measures give the wrong answer. What about other sequences of measures?

Cherlin's question

Question (Cherlin)

Is the generic theory $T_{\mathcal{G}_{\bigtriangleup}}$ of triangle-free graphs pseudofinite?

Cherlin's question

Question (Cherlin)

Is the generic theory $T_{\mathcal{G}_{\wedge}}$ of triangle-free graphs pseudofinite?

This question appears to be very difficult!

For example, it is open whether there are finite triangle-free graphs satisfying the extension axioms over all base graphs of size 4.

Cherlin's question

Question (Cherlin)

Is the generic theory $T_{\mathcal{G}_{\wedge}}$ of triangle-free graphs pseudofinite?

This question appears to be very difficult!

For example, it is open whether there are finite triangle-free graphs satisfying the extension axioms over all base graphs of size 4.

It seems likely that for some $\varphi \in T_{\mathcal{G}_{\wedge}}$, the finite models of φ are sporadic:

- Only occur in certain sizes,
- Or must have a very regular structure,
- Or no finite models at all!

In contrast, for all $\varphi \in T_{\mathcal{G}}$, the finite models of φ are extremely common.

Making Cherlin's question easier

Question

Does $T_{\mathcal{G}_{\Delta}}$ arise as the almost-sure theory for some *reasonable* sequence of measures $(\mu_n)_{n\in\omega}$?

Making Cherlin's question easier

Question

Does $T_{\mathcal{G}_{\Delta}}$ arise as the almost-sure theory for some *reasonable* sequence of measures $(\mu_n)_{n\in\omega}$?

What does *reasonable* mean?

- Requiring the μ_n to be uniform measures on $\mathcal{G}_{\triangle}(n)$ is too strong.
- But we need some assumptions: We don't want to allow each μ_n to give measure 1 to a single graph G_n in some sporadic family.

In this talk, I will focus on one possible meaning of *reasonable*.

Coherent measures

 $\operatorname{Str}_L(n)$ is the set of all *L*-structures with domain [n]. For any formula $\varphi(\overline{x})$ and any tuple \overline{a} from [n], define

$$[\varphi(\overline{a})]_n = \{ M \in \operatorname{Str}_L(n) \mid M \models \varphi(\overline{a}) \}.$$

Definition

 $(\mu_n)_{n\in\omega}$ is *coherent* if each μ_n is a probability measure on $\operatorname{Str}_L(n)$, and:

- For all $\varphi(\overline{x})$ quantifier-free, all \overline{a} from [n], and all $n \leq m$, $\mu_n([\varphi(\overline{a})]_n) = \mu_m([\varphi(\overline{a})]_m).$
- So For all $\varphi(\overline{x})$ quantifier-free, all \overline{a} from [n], and all $\sigma \in S_n$, $\mu_n([\varphi(\overline{a})]_n) = \mu_n([\varphi(\sigma(\overline{a}))]_n).$
- For all $\varphi(\overline{x})$ and $\psi(\overline{y})$ quantifier-free and \overline{a} and \overline{b} disjoint from [n], $\mu_n([\varphi(\overline{a}) \land \psi(\overline{b})]_n) = \mu_n([\varphi(\overline{a})]_n)\mu_n([\psi(\overline{b})]_n).$

Motivation: The Erdős–Renyi constructions G(n,1/2), which cohere to a random construction $G(\omega,1/2)$ of countably infinite graphs.

Measures on $Str_L(\omega)$

 $\operatorname{Str}_L(\omega)$ is the space of all *L*-structures with domain ω .

The topology on ${\rm Str}_L(\omega)$ is generated by basic clopen sets of the form

$$[\varphi(\overline{a})] = \{ M \in \operatorname{Str}_L(\omega) \mid M \models \varphi(\overline{a}) \}$$

where $\varphi(\overline{x})$ is a quantifier-free formula and \overline{a} is a tuple from ω .

Measures on $Str_L(\omega)$

 $\operatorname{Str}_L(\omega)$ is the space of all *L*-structures with domain ω .

The topology on ${
m Str}_L(\omega)$ is generated by basic clopen sets of the form

$$[\varphi(\overline{a})] = \{ M \in \operatorname{Str}_L(\omega) \mid M \models \varphi(\overline{a}) \}$$

where $\varphi(\overline{x})$ is a quantifier-free formula and \overline{a} is a tuple from ω .

A Borel probability measure on $\operatorname{Str}_L(\omega)$ is determined by the measure of each finite conjunction of atomic and negated atomic formulas (and we always have $\mu([a = b]) = 0$ when $a \neq b$).

In the case of the Erdős-Renyi construction, for example,

$$\mu\left(\left[\left(\bigwedge_{i=1}^{m} a_i E b_i\right) \land \left(\bigwedge_{j=1}^{n} \neg a_j E b_j\right)\right]\right) = \left(\frac{1}{2}\right)^{m+n}$$

Measures on $Str_L(\omega)$

Definition

 $(\mu_n)_{n\in\omega}$ is *coherent* if each μ_n is a probability measure on $Str_L(n)$, and:

- For all $\varphi(\overline{x})$ quantifier-free, all \overline{a} from [n], and all $n \leq m$, $\mu_n([\varphi(\overline{a})]_n) = \mu_m([\varphi(\overline{a})]_m).$
- So For all $\varphi(\overline{x})$ quantifier-free, all \overline{a} from [n], and all $\sigma \in S_n$, $\mu_n([\varphi(\overline{a})]_n) = \mu_n([\varphi(\sigma(\overline{a}))]_n).$
- For all $\varphi(\overline{x})$ and $\psi(\overline{y})$ quantifier-free and \overline{a} and \overline{b} disjoint from [n], $\mu_n([\varphi(\overline{a}) \land \psi(\overline{b})]_n) = \mu_n([\varphi(\overline{a})]_n)\mu_n([\psi(\overline{b})]_n).$

By condition (1), a coherent sequence induces a Borel probability measure on $\operatorname{Str}_L(\omega)$.

Example: The sequence $(G(n, 1/2))_{n \in \omega}$ induces $G(\omega, 1/2)$ on $Str_L(\omega)$.

Invariant measures

The space ${\rm Str}_L$ also comes equipped with a natural action of S_∞ , the permutation group of $\omega.$

 $\sigma \in S_\infty$ acts on a structure M with domain ω by permuting the domain:

$$\sigma(M) \models R(\overline{a}) \iff M \models R(\sigma^{-1}(\overline{a}))$$

Note:

- If $N = \sigma(M)$, then $\sigma \colon M \to N$ is an isomorphism.
- The orbit of M is $Iso(M) = \{N \in Str_L(\omega) \mid M \cong N\}.$

Invariant measures

The space ${\rm Str}_L$ also comes equipped with a natural action of S_∞ , the permutation group of $\omega.$

 $\sigma \in S_\infty$ acts on a structure M with domain ω by permuting the domain:

$$\sigma(M) \models R(\overline{a}) \iff M \models R(\sigma^{-1}(\overline{a}))$$

Note:

- If $N = \sigma(M)$, then $\sigma \colon M \to N$ is an isomorphism.
- The orbit of M is $Iso(M) = \{N \in Str_L(\omega) \mid M \cong N\}.$

To show that a Borel probability measure on $Str_L(\omega)$ is invariant for the action of S_{∞} , it suffices to check:

$$\mu([\varphi(\overline{a})]) = \mu([\varphi(\sigma(\overline{a}))])$$

for all quantifier-free $\varphi(\overline{x})$, $\overline{a} \in \omega$, and $\sigma \in S_{\infty}$.

Invariant measures

Definition

 $(\mu_n)_{n\in\omega}$ is *coherent* if each μ_n is a probability measure on $\operatorname{Str}_L(n)$, and:

- For all $\varphi(\overline{x})$ quantifier-free, all \overline{a} from [n], and all $n \leq m$, $\mu_n([\varphi(\overline{a})]_n) = \mu_m([\varphi(\overline{a})]_m).$
- So For all $\varphi(\overline{x})$ quantifier-free, all \overline{a} from [n], and all $\sigma \in S_n$, $\mu_n([\varphi(\overline{a})]_n) = \mu_n([\varphi(\sigma(\overline{a}))]_n).$
- For all $\varphi(\overline{x})$ and $\psi(\overline{y})$ quantifier-free and \overline{a} and \overline{b} disjoint from [n], $\mu_n([\varphi(\overline{a}) \land \psi(\overline{b})]_n) = \mu_n([\varphi(\overline{a})]_n)\mu_n([\psi(\overline{b})]_n).$

By condition (2), the measure on ${\rm Str}_L(\omega)$ induced by a coherent sequence is $S_\infty\mbox{-invariant}.$

Quantifier-free limits of finite structures

Convention: I will refer to S_{∞} -invariant Borel probability measures on $\operatorname{Str}_{L}(\omega)$ simply as *invariant measures*.

Definition

- Let A be a finite structure, and let $\varphi(\overline{x})$ be a quantifier-free formula in n free variables. Define $P(\varphi; A) = \frac{|\{\overline{a} \in A^n | A \models \varphi(\overline{a})\}|}{|A|^n}$.
- A sequence $(A_n)_{n \in \omega}$ of finite structures with $\lim_{n \to \infty} |A_n| = \infty$ q.f.-converges if $\lim_{n \to \infty} P(\varphi; A_n)$ exists for all quantifier-free φ .
- Such a convergent sequence assigns a limiting probability to every quantifier-free formula. There is a unique invariant measure μ on $\operatorname{Str}_L(\omega)$ which encodes these limiting probabilities, and we say $(A_n)_{n\in\omega}$ q.f.-converges to μ .

Example: The Paley graphs $(\mathbb{F}_q^{\times}, \{(x, y) \mid \exists z, z^2 = x - y\})$ for q a prime power, $q \equiv 1 \pmod{4}$, q.f.-converge to $G(\omega, 1/2)$.

This is the kind of convergence captured by graph limits / graphons.

Ergodic structures

Fact

For an invariant measure μ on $\operatorname{Str}_L(\omega)$, the following are equivalent:

- There is a sequence of finite L-structures, $(A_n)_{n\in\omega}$ which q.f.-converges to μ .
- $\textbf{O} \quad \text{For any quantifier-free formulas } \varphi(\overline{x}) \text{ and } \psi(\overline{y}) \text{ and any disjoint tuples } \overline{a} \text{ and } \overline{b} \text{ from } \omega,$

$$\mu([\varphi(\overline{a}) \land \psi(\overline{b})]) = \mu([\varphi(\overline{a})])\mu([\psi(\overline{b})])$$

• μ is ergodic for the action of S_{∞} (i.e. if X is a Borel set such that $\mu(X \triangle \sigma(X)) = 0$ for all $\sigma \in S_{\infty}$, then $\mu(X) = 0$ or 1).

Definition (Ackerman–Freer–K.–Patel)

An *ergodic structure* is an invariant measure on $Str_L(\omega)$ which satisfies the three equivalent conditions in the fact.

Ergodic structures

Definition

 $(\mu_n)_{n\in\omega}$ is *coherent* if each μ_n is a probability measure on $Str_L(n)$, and:

- For all $\varphi(\overline{x})$ quantifier-free, all \overline{a} from [n], and all $n \leq m$, $\mu_n([\varphi(\overline{a})]_n) = \mu_m([\varphi(\overline{a})]_m).$
- **②** For all $\varphi(\overline{x})$ quantifier-free, all \overline{a} from [n], and all $\sigma \in S_n$, $\mu_n([\varphi(\overline{a})]_n) = \mu_n([\varphi(\sigma(\overline{a}))]_n).$
- For all $\varphi(\overline{x})$ and $\psi(\overline{y})$ quantifier-free and \overline{a} and \overline{b} disjoint from [n], $\mu_n([\varphi(\overline{a}) \land \psi(\overline{b})]_n) = \mu_n([\varphi(\overline{a})]_n)\mu_n([\psi(\overline{b})]_n).$

By condition (3), the invariant measure on $Str_L(\omega)$ induced by a coherent sequence is an ergodic structure.

More on ergodic structures

Not all ergodic structures concentrate on Fraïssé limits:

Theorem (Ackerman-Freer-Patel)

Let M be a countable structure. The following are equivalent:

- *M* has trivial (group-theoretic) acl: For every finite tuple \overline{a} from *M* and every $b \in M$, there is an automorphism $\sigma \in Aut(M)$ such that $\sigma(\overline{a}) = a$ and $\sigma(b) \neq b$.
- 2 There is an invariant measure on $Str_L(\omega)$ such that $\mu(Iso(M)) = 1$.
 - 3 There is an ergodic structure such that $\mu(\text{Iso}(M)) = 1$.

More on ergodic structures

Not all ergodic structures concentrate on Fraïssé limits:

Theorem (Ackerman-Freer-Patel)

Let M be a countable structure. The following are equivalent:

- *M* has trivial (group-theoretic) acl: For every finite tuple \overline{a} from *M* and every $b \in M$, there is an automorphism $\sigma \in Aut(M)$ such that $\sigma(\overline{a}) = a$ and $\sigma(b) \neq b$.
- **2** There is an invariant measure on $Str_L(\omega)$ such that $\mu(Iso(M)) = 1$.
- **3** There is an ergodic structure such that $\mu(\text{Iso}(M)) = 1$.

Not all ergodic structures give measure 1 to a single isomorphism class:

In joint work with Ackerman, Freer, & Patel (*Properly Ergodic Structures*) we characterized theories T such that there exists an ergodic structure μ with $\mu(Mod(T)) = 1$ but $\mu(Iso(M)) = 0$ for all $M \models T$.

Strongly pseudofinite theories

Definition

A theory T is strongly pseudofinite if:

- There is a Fraïssé class K such that $T = T_K$.
- 2 There is a coherent sequence of measures $(\mu_n)_{n \in \omega}$ which has a zero-one law, and $T^{\text{a.s.}} = T$.

"The generic theory T_K is pseudofinite witnessed by a zero-one law for a reasonable sequence of measures."

Fact (Hill)

It follows from (1) and (2) that if μ is the ergodic structure induced by $(\mu_n)_{n\in\omega}$, then $\mu(\operatorname{Iso}(M_K)) = 1$.

In other words, all three of our limit notions coincide on T.

Example: $\operatorname{Th}(\mathcal{R})$ is strongly pseudofinite.

Strong pseudofiniteness and full amalgamation

Theorem (K.)

If K is a Fraïssé class with full amalgamation, T_K is strongly pseudofinite.

Fact

If T is strongly pseudofinite, and T' is a reduct of T which is also the generic theory of a Fraïssé class, then T' is strongly pseudofinite.

Strong pseudofiniteness and full amalgamation

Theorem (K.)

If K is a Fraïssé class with full amalgamation, T_K is strongly pseudofinite.

Fact

If T is strongly pseudofinite, and T' is a reduct of T which is also the generic theory of a Fraïssé class, then T' is strongly pseudofinite.

Examples:

- Directed graphs, hypergraphs, directed hypergraphs
- Bipartite graphs (with the partition named by unary predicates)
- Simplicial complexes (where *n*-cells are instances of *n*-ary relations)
- 3-hypergraphs in which every tetrahedron has an even number of faces (this is a reduct of the random graph which lacks full amalgamation)

Question

Is every strongly pseudofinite theory a reduct of the generic theory of a Fraïssé class with full amalgamation?

Disjoint *n*-amalgamation

Notation: $\mathcal{P}^{-}([n]) = \mathcal{P}([n]) \setminus \{[n]\}$. We view $\mathcal{P}^{-}([n])$ and $\mathcal{P}([n])$ as poset categories with a unique arrow $X \to Y$ if and only if $X \subseteq Y$.

Let K be a Fraïssé class, viewed as a category where arrows are embeddings.

A functor F from $\mathcal{P}^{-}([n])$ or $\mathcal{P}([n])$ to K preserves disjointness if for all Z in the domain category of F and all $X, Y \subseteq Z$, the images of F(X) and F(Y) in F(Z) are disjoint over the image of $F(X \cap Y)$ in F(Z).

K has disjoint n-amalgamation if every functor $F: \mathcal{P}^{-}([n]) \to K$ which preserves disjointness can be extended to a functor $\widehat{F}: \mathcal{P}^{-}([n]) \to K$ which preserves disjointness.

K has full amalgamation if it has disjoint n-amalgamation for all $n \in \omega$.

Disjoint 2-amalgamation

Disjoint 2-amalgamation is often called "strong amalgamation":

 $\label{eq:analog} \mbox{...and} \ f'(A_{\{0\}}) \cap g'(A_{\{1\}}) = f'(f(A_{\emptyset})) = g'(g'(A_{\emptyset})) \ \mbox{in} \ D.$

Fact

A Fraïssé class has disjoint 2-amalgamation if and only if its generic theory T_K has trivial (group-theoretic) definable closure, equivalently trivial (model-theoretic) algebraic closure.

Disjoint 3-amalgamation

Examples of failure: Let $A_X = \{a_i \mid i \in X\}$:

- $K = \text{finite triangle-free graphs.} a_1 E a_2, a_2 E a_3, a_1 E a_3.$
- K =finite partial orders. $a_1 < a_2$, $a_2 < a_3$, $a_3 < a_1$.
- $K = \text{finite equivalence relations.} a_1 E a_2, a_2 E a_3, \neg a_1 E a_3.$

Theorem (K.)

If K is a Fraïssé class with full amalgamation, T_K is strongly pseudofinite.

It suffices to define a coherent sequence of measures $(\mu_n)_{n\in\omega}$ which has a zero-one law with $T^{\text{a.s.}} = T_K$.

I will describe these measures as random constructions of a $L\mbox{-structures}$ with domain [n] for every n, built "from the bottom up".

Theorem (K.)

If K is a Fraïssé class with full amalgamation, T_K is strongly pseudofinite.

First, pick the atomic diagram of each element, uniformly at random from those consistent with K.

Theorem (K.)

If K is a Fraïssé class with full amalgamation, T_K is strongly pseudofinite.

Next, pick the atomic diagram of each pair, uniformly at random from those consistent with K and extending the atomic diagrams assigned to the singletons (disjoint 2-amalgamation implies that the set of choices is non-empty).

Theorem (K.)

If K is a Fraïssé class with full amalgamation, T_K is strongly pseudofinite.

Continue in this way, assigning the atomic diagram of each subset of size n uniformly at random from those consistent with K extending the diagrams assigned to the subsets of size n - 1.

Full amalgamation ensures that we never get stuck, and that all choices could be made as independently as possible.

The zero-one law

It remains to show that the μ_n have a zero-one law with $T^{\text{a.s.}} = T_K$. The proof is a simple generalization of the proof of the zero-one law for finite graphs.

We have described a sequence of measures μ_n on $Str_L(n)$.

• Since we always build structures in K, it suffices to show that $\lim_{n\to\infty}\mu_n([\varphi]_n)=1$ when φ is an extension axiom

$$\forall \overline{x} \exists y (\theta_A(\overline{x}) \to \theta_B(\overline{x}, y)).$$

- For any \overline{a} from [n], if $\theta_A(\overline{a})$, then for any other b, there is a positive probability $\varepsilon > 0$ that $\theta_B(\overline{a}, b)$.
- Conditioned on $[\theta_A(\overline{a})]$, for $b \neq b'$ not in \overline{a} , $[\theta_B(\overline{a}, b)]$ and $[\theta_B(\overline{a}, b')]$ are independent. So the conditional probability of $[\neg \exists y \, \theta_B(\overline{a}, b)]$ is $(1 \varepsilon)^{n-|A|}$.
- $\bullet \ \ {\rm So} \ \mu_n([\neg \varphi]_n) \leq n^{|A|}(1-\varepsilon)^{n-|A|} \to 0 \ {\rm as} \ n \to \infty.$

To understand strongly pseudofinite theories, we need to understand the role of the limiting ergodic structure.

Key tool: a vast generalization of de Finetti's theorem.

To understand strongly pseudofinite theories, we need to understand the role of the limiting ergodic structure.

Key tool: a vast generalization of de Finetti's theorem.

Setup:

- $(\xi_A)_{A \in \mathcal{P}_{fin}(\omega)}$ independent random variables, uniform on [0, 1].
- View a non-redundant tuple $a_0, \ldots, a_{n-1} \in \omega$ as an injective function $i \colon [n] \to \omega$.
- Denote by $\hat{\xi}_{\overline{a}}$ the family of random variables $(\xi_{i[X]})_{X \in \mathcal{P}([n])}$.

Definition

An AHK system is a collection of measurable functions

$$(f_n: [0,1]^{\mathcal{P}([n])} \to \operatorname{Str}_L(n))_{n \in \omega}$$

satisfying some coherence conditions.

Definition

An AHK system is a collection of measurable functions

 $(f_n: [0,1]^{\mathcal{P}([n])} \to \operatorname{Str}_L(n))_{n \in \omega}$

satisfying some coherence conditions.

An AHK system allows us to define a structure in $\operatorname{Str}_L(\omega)$ at random, by defining the induced structure on a tuple \overline{a} of length n to be $f_n(\widehat{\xi}_{\overline{a}})$. The coherence conditions ensure that this is well-defined.

Definition

An AHK system is a collection of measurable functions

 $(f_n: [0,1]^{\mathcal{P}([n])} \to \operatorname{Str}_L(n))_{n \in \omega}$

satisfying some coherence conditions.

An AHK system allows us to define a structure in $\operatorname{Str}_L(\omega)$ at random, by defining the induced structure on a tuple \overline{a} of length n to be $f_n(\widehat{\xi}_{\overline{a}})$. The coherence conditions ensure that this is well-defined.

Definition

If μ is the induced probability measure on $\operatorname{Str}_L(\omega)$, we say $(f_n)_{n\in\omega}$ is an *AHK representation* of μ .

Theorem (Aldous, Hoover, Kallenberg (in different contexts))

Every invariant probability measure μ on Str_L has an AHK representation.

The ergodic case

If \overline{a} and \overline{b} are tuples with intersection \overline{c} , then $f_n(\widehat{\xi}_{\overline{a}})$ and $f_m(\widehat{\xi}_{\overline{b}})$ are conditionally independent over $\widehat{\xi}_{\overline{c}}$ ("hidden information at \overline{c} ").

The ergodic case

If \overline{a} and \overline{b} are tuples with intersection \overline{c} , then $f_n(\widehat{\xi}_{\overline{a}})$ and $f_m(\widehat{\xi}_{\overline{b}})$ are conditionally independent over $\widehat{\xi}_{\overline{c}}$ ("hidden information at \overline{c} ").

Ergodicity corresponds to "no hidden information at \emptyset ".

Theorem (Aldous, for exchangeable arrays)

Let μ be an invariant measure on $Str_L(\omega)$. The following are equivalent:

- **(**) μ is an ergodic structure (recall: ergodic for the action of S_{∞}).
- 2 μ is "dissociated": For any quantifier-free formulas $\varphi(\overline{x})$ and $\psi(\overline{y})$ and any disjoint tuples \overline{a} and \overline{b} from ω ,

$$\mu([\varphi(\overline{a}) \land \psi(\overline{b})]) = \mu([\varphi(\overline{a})])\mu([\psi(\overline{b})]).$$

3 μ has an AHK representation which does not depend on ξ_{\emptyset} .

- Let Ω be a disjoint copy of ω .
- By a bijection $\omega \to \omega \cup \Omega$, transfer μ to a measure $\hat{\mu}$ on $Str_L(\omega \cup \Omega)$.

- Let Ω be a disjoint copy of ω .
- By a bijection $\omega \to \omega \cup \Omega$, transfer μ to a measure $\hat{\mu}$ on $Str_L(\omega \cup \Omega)$.
- Pick a structure M_Ø with domain Ω according to μ
 (ξ_Ø).

- Let Ω be a disjoint copy of ω .
- By a bijection $\omega \to \omega \cup \Omega$, transfer μ to a measure $\hat{\mu}$ on $Str_L(\omega \cup \Omega)$.
- Pick a structure M_{\emptyset} with domain Ω according to $\widehat{\mu}$ (ξ_{\emptyset}).
- For each $a \in \omega$, pick a structure $M_{\{a\}}$ with domain $\{a\} \cup \Omega$ according to $\hat{\mu}$, conditionally independently over M_{\emptyset} ($\xi_{\{a\}}$).

- Let Ω be a disjoint copy of ω .
- By a bijection $\omega \to \omega \cup \Omega$, transfer μ to a measure $\hat{\mu}$ on $Str_L(\omega \cup \Omega)$.
- Pick a structure M_{\emptyset} with domain Ω according to $\hat{\mu}$ (ξ_{\emptyset}).
- For each a ∈ ω, pick a structure M_{a} with domain {a} ∪ Ω according to μ̂, conditionally independently over M_∅ (ξ_{a}).
- Continue building from the bottom up: For each A ⊆_{fin} ω, pick a structure M_A with domain A ∪ {Ω} according to μ̂, conditionally independently over the (M_B)_{B⊊A} for all A ⊆_{fin} ω (ξ_A).

- Let Ω be a disjoint copy of ω .
- By a bijection $\omega \to \omega \cup \Omega$, transfer μ to a measure $\hat{\mu}$ on $Str_L(\omega \cup \Omega)$.
- Pick a structure M_{\emptyset} with domain Ω according to $\widehat{\mu}$ (ξ_{\emptyset}).
- For each a ∈ ω, pick a structure M_{a} with domain {a} ∪ Ω according to μ̂, conditionally independently over M_∅ (ξ_{a}).
- Continue building from the bottom up: For each A ⊆_{fin} ω, pick a structure M_A with domain A ∪ {Ω} according to μ̂, conditionally independently over the (M_B)_{B⊊A} for all A ⊆_{fin} ω (ξ_A).
- Show by induction that this process agrees with $\widehat{\mu}$ at every stage.

- Let Ω be a disjoint copy of ω .
- By a bijection $\omega \to \omega \cup \Omega$, transfer μ to a measure $\hat{\mu}$ on $Str_L(\omega \cup \Omega)$.
- Pick a structure M_{\emptyset} with domain Ω according to $\hat{\mu}$ (ξ_{\emptyset}).
- For each $a \in \omega$, pick a structure $M_{\{a\}}$ with domain $\{a\} \cup \Omega$ according to $\hat{\mu}$, conditionally independently over M_{\emptyset} ($\xi_{\{a\}}$).
- Continue building from the bottom up: For each A ⊆_{fin} ω, pick a structure M_A with domain A ∪ {Ω} according to μ̂, conditionally independently over the (M_B)_{B⊊A} for all A ⊆_{fin} ω (ξ_A).
- Show by induction that this process agrees with $\widehat{\mu}$ at every stage.
- By invariance, the random substructure with domain ω agrees with μ .
- Use standard probability theory tricks to replace all random choices above with random variables on [0, 1].

The case of graphons

Suppose $L = \{E\}$ and μ is an ergodic structure giving measure 1 to the class of graphs. Let $(f_n)_{n \in \omega}$ be an AHK representation for μ .

- The language is binary, so f_n is irrelevant for $n \ge 3$.
- There is only one graph each of size 0 and size 1, so f_0 and f_1 are irrelevant.
- μ is ergodic, so f_2 does not depend on ξ_{\emptyset} .
- For $a,b\in \omega,$ $f_2(\xi_{\{a\}},\xi_{\{a\}},\xi_{\{a,b\}})$ says either "edge" or "no edge".
- The actual value of $\xi_{\{a,b\}}$ is irrelevant: what matters is probability p, given $\xi_{\{a\}},\xi_{\{b\}}\in[0,1]$ that $f_2(\xi_{\{a\}},\xi_{\{b\}},\xi_{\{a,b\}})=$ "edge".

• Set
$$\widehat{f}(\xi_{\{a\}}, \xi_{\{b\}}) = p$$
.

 \widehat{f} is a graphon: a (a.s.) symmetric measurable function $[0,1]^2 \rightarrow [0,1]$.

AHK representations are the proper generalization of graphons to general relational languages. In specific cases, they can be simplified by an analysis like the above.

MS-Measurability

The rest of this talk is about on-going work with Cameron Hill.

Definition

An AHK system $(f_n)_{n\in\omega}$ is *fully independent* if whenever \overline{a} and \overline{b} are tuples intersecting in \overline{c} , then $f_n(\widehat{\xi}_{\overline{a}})$ and $f_m(\widehat{\xi}_{\overline{b}})$ are conditionally independent over $f_k(\widehat{\xi}_{\overline{c}})$.

Slogan: "No hidden information anywhere".

Theorem (Hill-K.)

If T is strongly pseudofinite, and the witnessing ergodic structure μ has a fully independent AHK representation, then T is MS-measurable.

Simplicity

Conjecture (Hill-K.)

If T is strongly pseudofinite, then T has trivial forking:

$$A \underset{C}{\stackrel{f}{\downarrow}} B \iff A \cap B \subseteq C.$$

In particular, it would follow that:

- Every strongly pseudofinite theory is simple of SU-rank 1.
- The generic theory $T_{\mathcal{G}_{\bigtriangleup}}$ of triangle-free graphs is not strongly pseudofinite.

Simplicity

Conjecture (Hill-K.)

If T is strongly pseudofinite, then T has trivial forking:

$$A \underset{C}{\stackrel{f}{\downarrow}} B \iff A \cap B \subseteq C.$$

In particular, it would follow that:

- Every strongly pseudofinite theory is simple of SU-rank 1.
- The generic theory $T_{\mathcal{G}_{\bigtriangleup}}$ of triangle-free graphs is not strongly pseudofinite.

Theorem (Hill-K.)

The theory of an equivalence relation with infinitely many infinite classes is not strongly pseudofinite.

Counterexample: equivalence relations

Let M be the equivalence relation with infinitely many infinite classes. Suppose for contradiction that T = Th(M) is strongly pseudofinite, witnessed by $(\mu_n)_{n \in \omega}$ which cohere to μ .

Counterexample: equivalence relations

Let M be the equivalence relation with infinitely many infinite classes. Suppose for contradiction that T = Th(M) is strongly pseudofinite, witnessed by $(\mu_n)_{n \in \omega}$ which cohere to μ .

- Any AHK representations of μ essentially has the following form:
 - Fix $(p_i)_{i \in \omega}$ with $0 < p_i < 1$ and $\sum_{i \in \omega} p_i = 1$.
 - ▶ The randomness at the level of a singleton {a} puts a in an equivalence class C_i with probability p_i.
 - No randomness at the level of pairs (or higher).
 - (In particular, this is a $\{0,1\}$ -valued graphon.)

Counterexample: equivalence relations

Let M be the equivalence relation with infinitely many infinite classes. Suppose for contradiction that T = Th(M) is strongly pseudofinite, witnessed by $(\mu_n)_{n \in \omega}$ which cohere to μ .

- Any AHK representations of μ essentially has the following form:
 - Fix $(p_i)_{i \in \omega}$ with $0 < p_i < 1$ and $\sum_{i \in \omega} p_i = 1$.
 - ▶ The randomness at the level of a singleton {a} puts a in an equivalence class C_i with probability p_i.
 - No randomness at the level of pairs (or higher).
 - (In particular, this is a $\{0,1\}$ -valued graphon.)

• There is some k > 1 such that $\lim_{n \to \infty} \mu_n([\forall x \exists^{\geq k} y \, xEy]_n) \neq 1$.

- ▶ It suffices to show that there is some $\varepsilon > 0$ such that for any N there is some $n \ge N$ such that $\mu_n([\forall x \exists^{\ge k} y \, xEy]_n) < 1 \varepsilon$.
- Fix a small ε . Pick p_i small enough so that for some $n \ge N$, $np_i \approx k/2$. This is the expected number of elements in the class C_i .
- By a Chernoff bound argument, the μ_n-probability that C_i has at least one but less than k elements is at least ε.

(e.g.
$$k=10$$
, $arepsilon=1/10$ works)