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Introduction: Categoricity

Once we have understood the distinction between syntax and semantics in logic,
i.e., between theories and their models, a natural question arises: How much
can the axioms of a theory actually tell us about its models? In the extreme
case, we might hope that a theory could tell us essentially everything about a
particular structure of interest, in the sense that it pins it down uniquely (up
to isomorphism).

For example, every complete ordered field is isomorphic to the field of real
numbers R. In a sense, this justifies the common axiomatic approach to real
analysis: after we give some construction of R, we can then forget that real num-
bers are Dedekind cuts or equivalence classes of Cauchy sequences or whatever,
working instead from the axioms of complete ordered fields.

Definition 0.1. A theory T is categorical1 if it has exactly one model up to
isomorphism.

We should specify what we mean by “theory”. This is a class on the model
theory of first-order logic, so we will focus on first-order theories. While the the-
ory of complete ordered fields alluded to above is classic example of a categorical
theory, it is not first-order. The completeness axiom requires us to quantify over
subsets of the field, so it is naturally second-order. More expressive logics are
interesting (and parallels to some of the theory developed in these notes are pos-
sible, e.g. see the literature on abstract elementary classes (AECs)), but they
are not within the scope of this course.

Unfortunately (or fortunately, depending on your perspective), the notion
of categoricity is rather trivial for first-order theories. If a first-order L-theory
T has an infinite model M , then, by the Löwenheim–Skolem theorem, T has
models of every infinite cardinality κ ≥ |L|. Models of different cardinalities
cannot be isomorphic, so T is not categorical.

Exercise 1. Let M be a structure. Show that Th(M) is categorical if and only
if M is finite.

Hint: If M is infinite, apply Löwenheim–Skolem as suggested above. If M
is finite, show that every model of Th(M) is isomorphic to M . Think about the
case of a finite language first, and then try to generalize to an infinite language.

A natural next question is this: Are there first-order theories for which the
Löwenheim–Skolem is essentially the only obstruction to categoricity? That is,
can a theory T pin down an infinite model M uniquely up to isomorphism once
we specify the cardinality of M?

Definition 0.2. Let κ be an infinite cardinal. A theory T is κ-categorical if T
has exactly one model of cardinality κ up to isomorphism. That is, if M,N |= T
with |M | = |N | = κ, then M ∼= N .

1This terminology is due to Oswald Veblen in 1904, who borrowed the term “categorical”
from philosophy. It has nothing to do with category theory, which would not be invented for
another 40 years or so.
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The answer is yes, κ-categorical theories exist. Here are some examples:

(1) The theory T∞ of infinite sets in the empty language. A structure in the
empty language is just a set, and two sets are isomorphic if and only if they
have the same cardinality. So T∞ is κ-categorical for every infinite cardinal
κ.

(2) VSFq
, the theory of infinite Fq-vector spaces, where Fq is a finite field.

An infinite Fq-vector space has dimension equal to its cardinality, and two
vector spaces are isomorphic if and only if they have the same dimension.
So VSFq is κ-categorical for every infinite cardinal κ.

(3) VSQ, the theory of Q-vector spaces. The Q-vector spaces of dimensions
1, 2, 3, . . . , ℵ0 are all countably infinite and non-isomorphic. But an un-
countable Q-vector space has dimension equal to its cardinality. So VSFq

is
κ-categorical for every uncountable cardinal κ.

(4) ACF0, the theory of algebraically closed fields of characteristic 0. Every
field of characteristic 0 has a transcendence degree over Q (the maximum
cardinality of an algebraically independent subsest), and two algebraically
closed fields of characteristic 0 are isomorphic if and only if they have equal
transcendence degrees. The fields of transcendence degree 0, 1, 2, 3, . . . , ℵ0

are all countably infinite and non-isomorphic. But an uncountable field has
transcendence degree equal to its cardinality. So ACF0 is κ-categorical for
every uncountable cardinal κ.

(5) DLO, the theory of dense linear orders without endpoints. By a back-and-
forth argument, DLO is ℵ0-categorical. But it is not κ-categorical for any
uncountable κ.

(6) TRG, the complete theory of the random graph (the Fräıssé limit of the class
of finite graphs). By a back-and-forth argument, TRG is ℵ0-categorical. But
it is not κ-categorical for any uncountable κ.

(7) RCF, the theory of real closed fields, which is the complete theory of R.
This theory is not κ-categorical for any infinite κ.

(8) TA, true arithmetic, the complete theory of (N; 0, 1,+,×). This theory is
not κ-categorical for any infinite κ.

In 1954, Jerzy  Loś observed that among complete theories in a countable2

language, he could only find four behaviors with respect to categoricity, and he
conjectured that these were the only four.

• Totally categorical: κ-categorical for all infinite κ. Examples 1 and 2
above.

2In these notes, “countable” means “finite or countably infinite”.
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• Uncountably categorical (but not totally categorical): κ-categorical if
and only if κ > ℵ0. Examples 3 and 4 above.

• Countably categorical (but not totally categorical): κ-categorical if and
only if κ = ℵ0. Examples 5 and 6 above.

• Non-categorical: κ-categorical for no infinite κ. Examples 7 and 8
above.

 Loś’s conjecture was proved by Michael Morley in his 1962 PhD thesis.

Theorem 0.3 (Morley’s Categoricity Theorem). Let T be a complete theory
in a countable language. If T is κ-categorical for some uncountable cardinal κ,
then T is λ-categorical for every uncountable cardinal λ.

More interesting than the statement of the theorem was the method of proof.
It turns out that the hypothesis of κ-categoricity for some uncountable κ allows
us to deduce a suprising amount of structural information about models of T .
Morley’s thesis contains a wealth of original ideas that would influence the de-
velopment of modern model theory: the Morley rank, totally transcendental
(ω-stable) theories, the importance of prime and saturated models, the distinc-
tion between indiscernible sequences and sets, etc.

One of the goals of this course is to prove Morley’s theorem. I will not follow
his original proof, but rather an improved presentation due to John Baldwin
and Alistair Lachlan (from Baldwin’s 1971 PhD thesis under Lachlan). We will
also not take the most direct route to the proof, preferring to take our time
situating the material, as much as time permits, in the context of more recent
developments.

Morley’s theorem is about uncountably categorical theories, e.g., Examples
1–4 above. In each of these examples, uncountable categoricity is explained by
the existence of a notion of dimension, which classifies models up to isomor-
phism. For sets, the “dimension” is just cardinality. For vector spaces, it is
ordinary linear dimension. And for algebraically closed fields, it is transcen-
dence degree over the prime field. The Baldwin–Lachlan innovation is to find a
way to assign an abstract dimension to any model of an uncountably categorical
theory. They did this by finding something called a strongly minimal set in any
such model, building on William Marsh’s 1966 PhD thesis, which introduced
strongly minimal sets and the associated notion of dimension. This notion of
dimension allowed them to prove that an uncountably categorical theory which
is not totally categorical has exactly ℵ0-many models up to isomorphism. This
is one of several related statements commonly known as the Baldwin–Lachlan
Theorem.

In the 1970s and ’80s, the ideas of Morley’s theorem and the Baldwin–
Lachlan theorem were generalized and extended, most notably by Saharon She-
lah. One of Shelah’s original motivations was to remove the countable language
hypothesis in Morley’s theorem, which he succeeded in doing.
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Theorem 0.4 (Shelah). Let T be a complete L-theory. If T is κ-categorical for
some uncountable cardinal κ ≥ |L|, then T is λ-categorical for every uncountable
cardinal λ > |L|.

We will not prove Shelah’s theorem in this class: the proof is rather technical.
What we will study is stability theory, the general and powerful framework he
developed to obtain this result and many many many others.

We will deal with countable languages almost exclusively – the exception
is that we will sometimes form the language LA obtained by adjoining to L
one constant symbol for each element of a subset A ⊆ M |= T , and A may be
uncountable.

Where questions of categoricity are concerned, we might as well assume our
theory is consistent and complete: If T is incomplete, then it has models M and
M ′ which are not even elementarily equivalent, much less isomorphic.

Finally, by Exercise 1 above, there is not much of interest to say about a
complete theory with a finite model. In sum, we adopt the following convention.

Convention. Throughout these notes, L is a countable first-order language
and T is a complete L-theory with infinite models.
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1 A brief primer on set theory

In this section, I will develop the set theory background necessary for the rest
of the notes. Since this is not a course in set theory, I will adopt a someone
informal style: rather than starting from the axioms of ZFC, I will assume
you know what a set is and prove the results we need on ordinal and cardinal
numbers in the style of “ordinary mathematics”.

1.1 Comparing cardinality

Before defining “cardinal”, we will start by explaining how to compare cardi-
nalities of sets. That is, we do not yet define the notation |X|, just the relations
|X| ≤ |Y | and |X| = |Y |.

Definition 1.1. Let X and Y be sets. We define |X| ≤ |Y | if there exists
an injective function X → Y . We define |X| = |Y | if there exists a bijective
function X → Y .

If there is a surjective function X → Y , we can define an injective function
Y → X by mapping each element of Y to one of its preimages3 in X, and
hence |Y | ≤ |X|. The converse (if |Y | ≤ |X|, then there is a surjective function
X → Y ) is true except when Y = ∅ and X ̸= ∅.

Exercise 2. Show that the relation |X| ≤ |Y | is a pre-order on the class of all
sets. That is, it is reflexive and transitive. Show that the relation |X| = |Y | is
an equivalence relation on the class of all sets. That is, it is reflexive, transitive,
and symmetric.

It is not obvious that |X| = |Y | is the equivalence relation induced by the
preorder |X| ≤ |Y |. This is the Cantor–Schröder–Bernstein theorem.

Theorem 1.2. If |X| ≤ |Y | and |Y | ≤ |X|, then |X| = |Y |.

Proof. Let g : X → Y and f : Y → X be injective functions witnessing |X| ≤ |Y |
and |Y | ≤ |X|. Let X ′ = im(g) ⊆ Y . Then g witnesses that |X| = |X ′|, so it
suffices to prove that |X ′| = |Y |. Moreover, f ′ = g ◦ f : Y → Y is an injective
function such that im(f ′) ⊆ X ′.

Replacing X with X ′ and f with f ′, we have reduced to showing that if
X ⊆ Y and f : Y → Y is an injective function with im(f) ⊆ X, then |X| = |Y |.

We define sets Zn by induction. Set Z0 = Y \X, and define Zn+1 = f(Zn)
for all n. Let Z =

⋃
n∈N Zn, and define

h(y) =

{
f(y) if y ∈ Z

y if y /∈ Z.

I claim that h : Y → X is a bijection, which establishes |X| = |Y |.
3In general, this argument requires the axiom of choice to pick a preimage for each element

of Y .
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First we show that im(h) ⊆ X. If y ∈ Z, then h(y) = f(y) ∈ im(f) ⊆ X. If
y /∈ Z, then y /∈ Z0, so y /∈ Y \X, and hence h(y) = y ∈ X.

For surjectivity, let x ∈ X. If x /∈ Z, then x = h(x). If x ∈ Z, then x ∈ Zn
for some n. Note that n > 0, since x /∈ Z0 = Y \ X. Then there is some
y ∈ Zn−1 such that x = f(y). Since y ∈ Z, h(y) = f(y) = x.

For injectivity, suppose h(y) = h(y′). If y, y′ ∈ Z, then f(y) = f(y′), so
y = y′ since f is injective. If y, y′ /∈ Z, then y = h(y) = h(y′) = y′. The
remaining case is that y ∈ Z and y′ /∈ Z. Then f(y) = h(y) = h(y′) = y′. But
if y ∈ Zn, then y′ = f(y) ∈ Zn+1 ⊆ Z, contradiction. So this case does not
occur.

Cantor’s classic diagonalization argument shows that for every set, there is
a set of strictly larger cardinality, namely its powerset: P(X) = {Y | Y ⊆ X}.

Theorem 1.3 (Cantor). For all sets X, |X| < |P(X)|.

Proof. To show |X| ≤ |P(X)|, it suffices to produce an injective function
f : X → P(X). One such function is given by f(x) = {x}.

To show |X| ≠ |P(X)|, suppose for contradiction that there is a bijective
function g : X → P(X). Define Y = {x ∈ X | x /∈ g(x)} ∈ P(X). Since g is
surjective, there is some y ∈ X such that g(y) = Y . Is y ∈ Y ? If y ∈ Y , then
by definition of Y , y /∈ g(y) = Y . But if y /∈ Y = g(y), then by definition of Y ,
y ∈ Y . In either case, we have a contradiction.

1.2 Ordinals

It will be useful to pick a canonical representative for each equivalence class of
the equivalence relation |X| = |Y |. To do this, we will introduce the ordinal
numbers. Ordinals have the additional advantage of providing a framework for
induction and recursion for infinite sets.

The ordinals are a linearly ordered number system extending the natural
numbers, characterized by the following properties:

• 0 is an ordinal.

• For every ordinal α, there is a next largest ordinal α + 1 (this is called a
successor ordinal).

• For every non-empty set of ordinals S with no greatest element, there is
an ordinal supS which is the least upper bound of S (this is called a limit
ordinal).

• The ordinals are the smallest system with these closure properties.

We will take these properties as axiomatic, and avoid the details of con-
structing the ordinals in ZFC. The last clause essentially asserts that induction
can be extended to the ordinals.

Theorem 1.4 (Transfinite induction). Let P be a property of ordinals. Suppose
that:
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(1) Base case: 0 satisfies P .

(2) Successor step: If α satisfies P , then α+ 1 satisfies P .

(3) Limit step: If γ is a limit ordinal and every α < γ satisfies P , then γ
satisfies P .

Then every ordinal satisfies P .

Proof. Consider the collection of all ordinals α such that all β ≤ α satisfy P .
This collection contains 0 and is closed under successors and limits, so it contains
all the ordinals.

Exercise 3. Prove the principle of “strong induction” for the ordinals: Suppose
that for every ordinal α, if all ordinals β < α satisfy P , then α satisfies P . Then
every ordinal satisfies P .

Each natural number n is an ordinal (the nth successor of 0). The least limit
ordinal is denoted ω. The ordinals continue:

0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . ,

ω + ω(= ω · 2), ω · 2 + 1, ω · 2 + 2, . . .

ω · 3, . . . , ω · 4, . . . , ω · ω(= ω2), . . .

Formally, when we construct the ordinals in set theory, an ordinal α is iden-
tified with the set of ordinals less than α. So 0 = ∅, 1 = {0}, 2 = {0, 1},
ω = {0, 1, 2, . . . } = N, etc. Observe that with this convention, for any ordinals
α and β are ordinals, α ∈ β if and only if α < β, and α ⊆ β if and only if
α ≤ β. We can also give a concrete description of the successor and supremum
operations: α+ 1 = α ∪ {α}, and supS =

⋃
α∈S α.

Proposition 1.5. For every set X, there is some ordinal α such that |α| ̸≤ |X|,
i.e., there is no injective function α→ X.

Proof. Let S(X) be the set of all ordinals which admit an injective function to
X. It suffices to find an ordinal α which is not in S(X). If S(X) has a greatest
element β, then we can take α = β + 1. If S(X) has no greatest element, then
we can take α = supS.

The careful reader may notice something troubling at this point: Why can’t
we apply the proof of Proposition 1.5, replacing S(X) with the collection Ord of
all ordinals, to obtain an ordinal which is not in Ord, and hence a contradiction?
This is sometimes called the “Burali-Forti paradox”. The resolution is that Ord
is not a set. Instead, it is a proper class: a collection that we can talk about,
but which is somehow “too big” to be a set. This highlights a subtlety in the
proof of Proposition 1.5: How do we know that S(X) is a set, when the class
of all ordinals is not a set? To answer this question and give a more formal
proof, we have to carefully apply the set existence properties established by the
axioms of ZFC. I will omit a formal proof, since our goal in this section is to
avoid delving into these kinds of details.

9



Definition 1.6. A linear order (L,≤) is a well-order if every non-empty subset
of L has a least element.

Proposition 1.7. The class of ordinals is a well-order.

Proof. Let X be a set of ordinals with no least element. Let P (α) be the
property “α /∈ X”. If all ordinals β < α satisfy P , then β /∈ X for all β < α.
Since X has no least element, α /∈ X, so α satisfies P . By strong induction,
every ordinal satisfies P , so X is empty.

Note that every subset of a well-order is a well-order. It follows that every
ordinal α (viewed, remember, as the set of ordinals less than α) is a well-order.

Proposition 1.8. Suppose (L,≤) is a well-ordered set. Then there is an ordinal
α such that (α,≤) ∼= (L,≤).

Proof. Suppose for contradiction that there is no such ordinal α. We construct
a family of functions fβ for all ordinals β, such that:

(1) fβ is an embedding (β,≤) → (L,≤).

(2) im(fβ) is a downwards-closed subset of L. That is, if b ∈ im(fβ) and a ≤ b
in L, then a ∈ im(fβ).

(3) If β < β′, then fβ ⊆ fβ′ .

In the base case, we let f0 be the empty function ∅ → L.
For the successor step, given fβ , we define fβ+1. By our assumption, fβ is

not an isomorphism, so fβ is not surjective. Thus L \ im(fβ) is non-empty. Let
b the least element of L \ im(fβ), which exists because L is a well-order. Since
im(fβ) is downwards-closed, b is greater than every element of im(fβ). Define
fβ+1 = fβ ∪ (β, b), the map which extends fβ by mapping β to b.

For the limit step, given (fβ)β<γ with γ a limit ordinal, define fγ =
⋃
β<γ fβ .

In each case, it is easy to verify conditions 1, 2, and 3. The result of this
construction is that every ordinal admits an injective map into L, contradicting
Proposition 1.5.

We can carry out essentially the same argument for unordered sets.

Theorem 1.9 (Zermelo). Every set is in bijection with an ordinal.

Proof. Let X be a set. Suppose for contradiction that there is no ordinal α such
that X is in bijection with α. We construct an injective function fβ : β → X
for all ordinals β, such that when β < β′, fβ ⊆ fβ′ .

In the base case, we let f0 be the empty function ∅ → X.
For the successor step, given fβ , we define fβ+1. By our assumption, fβ is

not a bijection, so fβ is not surjective. Thus X \ im(fβ) is non-empty. Let b
an arbitrary element of X \ im(fβ). Define fβ+1 = fβ ∪ (β, b), the map which
extends fβ by mapping β to b.

For the limit step, given (fβ)β<γ with γ a limit ordinal, define fγ =
⋃
β<γ fβ .

The result of this construction is that every ordinal admits an injective map
into X, contradicting Proposition 1.5.
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The key difference between the proofs of Proposition 1.8 and Theorem 1.9
is that the well-order on L gave us a canonical choice of where to map each
ordinal, while in the proof of Zermelo’s theorem, we had to make many arbitrary
choices. The proof of Proposition 1.8 (and everything else we’ve done up to this
point) goes through without the axiom of choice, while the proof of Theorem 1.9
requires the axiom of choice (as will much of what we prove from here on out).

Zermelo’s theorem is often called the Well-Ordering Theorem (because it
implies that every set can be well-ordered), and it turns out to be equivalent to
the axiom of choice over ZF set theory. It makes possible the following definition,
which gives us a much clearer picture of the possible cardinalities of sets.

Definition 1.10. For any set X, the cardinality of X, denoted |X|, is the
least ordinal κ such that there is a bijective function X → κ. A cardinal is an
ordinal κ such that |κ| = κ (i.e., an ordinal which is not in bijection with any
smaller ordinal).

Exercise 4. Show that this notation agrees with that in Definition 1.1. That
is, there is an injective function X → Y if and only if |X| ≤ |Y | (as ordinals),
and there is a bijective function X → Y if and only if |X| = |Y | (as ordinals).

Lemma 1.11. Every infinite cardinal is a limit ordinal.

Proof. It suffices to show that for every infinite successor ordinal α+ 1, there is
a bijection between α+ 1 and α (since then α+ 1 is not a cardinal). Note that
since α+ 1 is infinite, α ≥ ω. Define:

f(β) =


β + 1 β < ω

β ω ≤ β < α

0 β = α.

and verify that this gives a bijection (α+ 1) → α.

Every finite ordinal is a cardinal: 0, 1, 2, . . . , i.e. the natural numbers. The
infinite cardinals, being a subclass of the ordinals, are well-ordered, and hence
can be indexed by the ordinals:

• ℵ0 = ω is the smallest infinite cardinal.

• Given κ = ℵα, we define κ+ = ℵα+1 to be the least cardinal greater than
ℵα (this is a successor cardinal).

• For a limit ordinal γ, we define ℵγ = sup{ℵα | α < γ} (this is a limit
cardinal).

Exercise 5. Verify that the definition above makes sense:

(a) For any ordinal α, there is a least cardinal greater than ℵα.

(b) For a limit ordinal γ, ℵγ , as defined above, is a cardinal.
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(c) Every infinite cardinal is ℵα for some ordinal α.

(Hint: Prove by strong transfinite induction that for every ordinal β, if β
is an infinite cardinal, then β = ℵα for some α.)

Note that, by convention, all successor cardinals and limit cardinals are
uncountably infinite (i.e., 2 is not a successor cardinal, despite being the next
cardinal after 1, and ℵ0 is not a limit cardinal, despite being the supremum of
the finite cardinals). Different sources may disagree on this point.

1.3 Cardinal arithmetic

Definition 1.12. Let κ and λ be cardinals.

• κ+ λ is the cardinality of the disjoint union

κ ⊔ λ = {(0, α) | α ∈ κ} ∪ {(1, β) | β ∈ λ}.

• κ · λ is the cardinality of the Cartesian product

κ× λ = {(α, β) | α ∈ κ, β ∈ λ}.

• κλ is the cardinality of the set of functions

Fun(λ, κ) = {f | f : λ→ κ is a function}.

For finite cardinals, these operations agree with the usual addition, multi-
plication, and exponentiation of natural numbers. For infinite cardinals, we will
now show that addition and multiplication are very simple operations. In con-
trast, cardinal exponentiation can be extremely complicated: most facts about
it are independent from ZFC set theory.

To understand cardinal multiplication, we introduce a canonical well-ordering
of the product κ× κ = {(β, β′) | β, β′ < κ}:

(β, β′) < (γ, γ′) iff max(β, β′) < max(γ, γ′)

or max(β, β′) = max(γ, γ′) and β < γ

or max(β, β′) = max(γ, γ′) and β = γ and β′ < γ′

Exercise 6. Show that <, as defined above, well-orders κ× κ.

Theorem 1.13. For every infinite cardinal κ, (κ × κ,<) ∼= (κ,<). As a con-
sequence, κ · κ = κ.

Proof. Since every infinite cardinal is ℵα for some ordinal α, we can prove
things about the infinite cardinals by transfinite induction (over their indexing
ordinals). So we assume that (λ × λ,<) ∼= (λ,<) for all infinite cardinals less
than κ and prove the same for κ.

By Exercise 6, (κ × κ,<) is a well-ordered set, so by Proposition 1.8, there
is an isomorphism f : (δ,<) → (κ× κ,<) for some ordinal δ. It suffices to show
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δ = κ. Note that κ ≤ κ · κ, since the function α 7→ (α, 0) is an injective map
κ→ κ× κ. So δ ≥ |δ| = |κ× κ| ≥ κ.

Suppose for contradiction that δ > κ, i.e., κ ∈ δ. Let (β, β′) = f(κ). Then
f restricts to an isomorphism from κ to X = {(γ, γ′) | (γ, γ′) < (β, β′)}.

Now let α = max(β, β′) + 1. Note that since (β, β′) ∈ κ×κ, max(β, β′) < κ.
By Lemma 1.11, κ is a limit ordinal, so also α < κ. In particular, λ = |α| is a
cardinal less than κ.

We have X ⊆ α×α, since if (γ, γ′) < (β, β′), then max(γ, γ′) ≤ max(β, β′) <
α, so γ ∈ α and γ′ ∈ α. Thus κ = |X| ≤ |α× α| = λ · λ. If λ is finite, then λ · λ
is finite. If λ is infinite, then λ · λ = λ by induction. In either case, we have a
contradiction, since κ is an infinite cardinal greater than λ.

Corollary 1.14. Let κ and λ be non-zero cardinals such that at least one of κ
and λ is infinite. Then:

κ+ λ = max(κ, λ)

κ · λ = max(κ, λ)

Proof. Cardinal addition and multiplication are commutative, since there are
bijections κ ⊔ λ → λ ⊔ κ and κ × λ → λ × κ. So without loss of generality,
assume κ ≤ λ. In particular, κ ̸= 0 and λ is infinite. Then:

λ ≤ κ · λ ≤ λ · λ = λ

and
λ ≤ κ+ λ ≤ λ+ λ = 2 · λ = λ.

The following result is useful for estimating the sizes of infinite unions.

Corollary 1.15. If (Xi)i∈I is an infinite family of sets, then the cardinality of⋃
i∈I Xi is bounded above by the supremum of |I| and |Xi| for all i ∈ I.

Proof. If κ = supi∈I |Xi|, then∣∣∣∣∣⋃
i∈I

Xi

∣∣∣∣∣ ≤
∣∣∣∣∣⊔
i∈I

κ

∣∣∣∣∣ = |I × κ| = max(|I|, κ).

Exercise 7. Prove the following, for all cardinals κ, λ, κ′, λ′, µ:

(a) If λ > 0, then κ ≤ κλ.

(b) If κ > 1, then λ ≤ κλ.

(c) If 0 < κ ≤ κ′ and λ ≤ λ′, then κλ ≤ κ′λ
′
.

(d) κλ+µ = κλ · κµ.

(e) (κ · λ)µ = κµ · λµ.

(f) (κλ)µ = κλ·µ.

13



For any set X, there is a natural bijection between P(X) and Fun(X, 2), so
|P(X)| = 2|X|. Thus Cantor’s theorem implies κ < 2κ for all cardinals κ. It is
natural to ask whether 2κ is the successor κ+ or some larger cardinal.

The Continuum Hypothesis (CH) is the statement that 2ℵ0 = ℵ1. The
Generalized Continuum Hypothesis (GCH) is the statement that 2κ = κ+

for all infinite cardinals κ.

Fact 1.16. Both CH and GCH are independent of ZFC.

Definition 1.17. Let κ be an infinite cardinal. The cofinality of κ, cf(κ), is
the least cardinal λ such that κ can be written as a union of λ-many sets of
cardinality < κ:

κ =
⋃
α∈λ

Xα with |Xα| < κ for all α ∈ λ.

By Corollary 1.14, a finite union of sets of cardinality < κ has cardinality
< κ, so cf(κ) cannot be finite. On the other hand, we always have κ =

⋃
α<κ{α},

a union of κ-many sets of size 1. So ℵ0 ≤ cf(κ) ≤ κ.

Definition 1.18. An infinite cardinal κ is regular if cf(κ) = κ. Otherwise, κ
is singular.

Example 1.19. ℵ0 is regular, since a union of finitely many finite sets is finite.
The successor cardinal ℵ1 is regular, since a union of countably many count-

able sets is countable (by Corollary 1.15).
The limit cardinal ℵω is singular with cf(ℵω) = ℵ0, since ℵω =

⋃
n∈ω ℵn.

The next proposition generalizes the proof that ℵ1 is regular.

Proposition 1.20. Every successor cardinal is regular.

Proof. Write our successor cardinal as κ+, and let λ = cf(κ+). Then we can
write κ+ =

⋃
α∈λXα, with |Xα| < κ+ for all α. It follows that |Xα| ≤ κ for all

α, so supα∈λ |Xα| ≤ κ. But then by Corollary 1.15,

κ+ =

∣∣∣∣∣⋃
α∈λ

Xα

∣∣∣∣∣ ≤ max(λ, sup
α∈λ

|Xα|) ≤ max(λ, κ),

so λ = κ+.

Example 1.19 and Proposition 1.20 suggest the question: are there any reg-
ular limit cardinals? This turns out to be rather subtle from the metamathe-
matical point of view.

Definition 1.21. A regular limit cardinal is called weakly inaccessible. A
cardinal is a strong limit cardinal if for all λ < κ, we have 2λ < κ. A regular
strong limit cardinal is called (strongly) inaccessible.
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Fact 1.22. If ZFC is consistent, then ZFC does not prove that weakly inacces-
sible cardinals exist. Even stronger, ZFC does not prove that it is consistent
that weakly inaccessible cardinals exist.

This is different from the status of CH and GCH. If ZFC is consistent, then
ZFC proves neither the CH nor its negation. On the other hand, if ZFC is
consistent, then ZFC does not prove that weakly inaccessible cardinals exist.
However, it is possible that ZFC outright proves that there are no weakly in-
accessible cardinals. Nevertheless, most set theorists believe that weakly and
strongly inaccessible cardinals are consistent with ZFC.

We end with one of the few facts about cardinal exponentiation that is
actually provable in ZFC. It is instructive to think about how the proof of
Theorem 1.23 can be viewed as a generalization of Cantor’s diagonalization
argument.

Theorem 1.23. For any infinite cardinal κ, κcf(κ) > κ.

Proof. Let λ = cf(κ). By Exercise 7, κ ≤ κλ.
Now suppose for contradiction that there is a bijection f : κ → Fun(λ, κ).

Since λ = cf(κ), we can write κ =
⋃
α∈λXα, with |Xα| < κ for all α ∈ λ. Fixing

α ∈ λ, let Yα = {f(β)(α) | β ∈ Xα} ⊆ κ. Then |Yα| ≤ |Xα| < κ, so we can
pick some γα ∈ κ such that γ /∈ Yα. Defining g(α) = γα, we have a function
g : λ→ κ such that for all α ∈ λ, and all β ∈ Xα, g(α) ̸= f(β)(α).

Now since f is surjective, there is some β∗ ∈ κ such that f(β∗) = g. Since⋃
α∈λXα = κ, there is some α∗ ∈ λ such that β∗ ∈ Xα∗ . But then we have

g(α∗) = f(β∗)(α∗), contradicting our choice of g.

15



2 Types and saturated models

We now return to the context of model theory. Recall our convention: L is a
countable first-order language and T is a complete L-theory with infinite models.

2.1 Types

Let’s begin by setting some notation and terminology. A context is a tuple of
distinct variables. To simplify notation, we often write variable contexts as a
single letter, e.g. x, and we write |x| for the cardinality of the set of variables in
x. Contexts are usually finite, but they need not be. We say a formula or type
is in context x if all of its free variables come from x. We write φ(x) or Σ(x) to
indicate that the formula φ or the set of formulas Σ is in context x.

When I speak of a set A, I mean a subset of a model of T , i.e., A ⊆M |= T .
An interpretation of a context x in a set A is an assignment of an element of
A to each variable in x (equivalently, a tuple from A indexed by x). We write
Ax for the set of interpretations of x in A. For every n ∈ ω, there is a canonical
context x1, . . . , xn. We write An for the set of interpretations of this context in
A (equivalently, the tuples from A of length n).

For a set A, we define the language LA obtained from A by adjoining a
new constant symbol for each element of A. We define TA = ThLA

(M). We
sometimes call the new constant symbols “parameters from A”. Depending on
whether we want to make the parameters explicit, a formula with parameters
from A can be written as φ(x), where φ(x) is an LA-formula, or as ψ(x, a),
where ψ(x, y) is an L-formula and a ∈ Ay. We write Fx(A) for the set of all
LA-formulas in context x.

Definition 2.1. Suppose M and N are models of T and A ⊆ M . A partial
elementary map is a function f : A→ N such that for all formulas φ(x) and
all a ∈ Ax, M |= φ(a) if and only if N |= φ(f(a)).

Note that a model N |= TA is the same as a model N |= T , equipped with
a partial elementary map f : A→ N .

A partial type over A in context x is a set of formulas in Fx(A). A partial
type Σ(x) over A is consistent if Σ(x)∪TA is satisfiable: there a model N |= TA
and a tuple n ∈ Nx such that N |= φ(n) for all φ ∈ Σ(x). A partial type
Σ(x) is complete if it is consistent and φ(x) ∈ Σ(x) or ¬φ(x) ∈ Σ(x) for
all φ(x) ∈ Fx(A). We write Sn(A) for the space of complete types over A in
context x1, . . . , xn. More generally, for a context x, we write Sx(A) for the space
of complete types over A in context x.

If p ∈ Sx(A), with A ⊆ N and f : A→ N is a partial elementary map, define
the pushforward of p along f :

f∗p = {φ(x, f(a)) | φ(x, a) ∈ p}.

Note that f∗p ∪ Tf(A) is consistent, since this differs from p ∪ TA only in the
names used for the constant symbols. Thus f∗p ∈ Sx(f(A)).
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Proposition 2.2. Suppose A is a set and x is a context.

(1) |Fx(A)| = max(ℵ0, |A|, |x|).

(2) |Sx(A)| ≤ 2|Fx(A)|.

Proof. Let κ = max(ℵ0, |A|, |x|). A formula in Fx(A) is a finite sequence of
symbols from an alphabet which includes the symbols in L (which we assume is
countable), the constant symbols from A, the variables in x, and finitely many
extra symbols such as logical connectives and parentheses. So the alphabet has
size ≤ κ.

Let Seq(n) be the set of sequences of length n from this alphabet. Then
|Seq(n)| ≤ κn = κ, since κ is infinite. Now Fx(A) ⊆

⋃
n∈ω Seq(n), so |Fx(A)| ≤

max(ℵ0, κ) = κ by Corollary 1.15.
Conversely, we have ℵ0 ≤ |Fx(A)| (there are infinitely many formulas, e.g.

⊤, ⊤ ∧ ⊤, ⊤ ∧ ⊤ ∧ ⊤, etc.), |A| ≤ |Fx(A)| (e.g. a = a for each a ∈ A), and
|x| ≤ |Fx(A)| (e.g. xi = xi for each xi in x).

A type is a set of formulas, so |Sx(A)| ≤ |P(Fx(A))| = 2|Fx(A)|.

Note two important special cases of Proposition 2.2: If x and A are count-
able, then |Fx(A)| = ℵ0 and |Sx(A)| ≤ 2ℵ0 . If x is countable and A is infinite,
then |Fx(A)| = |A| and |Sx(A)| ≤ 2|A|.

Lemma 2.3. Suppose p(x) ∈ Sx(A) where A ⊆ M |= T . Then there is an
elementary extension M ⪯ M ′ with |M ′| = max(|M |, |x|) such that p(x) is
realized in M ′.

Proof. Since p(x) ∈ Sx(A), p(x) ∪ TA is consistent. This gives a model N with
a partial elementary map f : A → N and a tuple n ∈ Nx realizing f∗p(x).
To improve this to an elementary extension of M , we need to show that that
p(x) ∪ TM is consistent.

Since p(x) and TM are closed under conjunction, by compactness it suffices
to show that for any formula φ(x) ∈ p(x) and any LM -sentence ψ ∈ TM ,
{φ(x), ψ} is consistent. We can write φ(x) as φ(x, a) and ψ as ψ(a,m), where
a is the tuple of all parameters from A appearing in φ(x) and ψ, and m is
the tuple of all parameters from M \ A appearing in ψ. Now M |= ∃y ψ(a, y),
so N |= ∃y ψ(f(a), y). Let n′ ∈ Ny be a witness to the existential quantifier.
Interpreting the variables x as n, the constant symbols a as f(a), and the
constant symbols m and n′, N is a model of {φ(x), ψ}. Thus p(x) ∪ TM is
consistent.

Now a model of p(x) ∪ TM consists of an elementary extension M ⪯ M ′

and a ∈ (M ′)x such that M ′ |= p(a). By downward Löwenheim–Skolem, we
can take an elementary substructure of M ′ containing M and a of cardinality
max(|M |, |x|).
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2.2 Saturated models

Saturation is a useful notion of “completeness” of a model M . In this section,
we will establish the useful properties of saturated models of size κ: universality
(for models of size ≤ κ), homogeneity (for subsets of size < κ), and uniqueness.

Definition 2.4. Let κ be an infinite cardinal. A model M |= T is κ-saturated
if for all A ⊆M with |A| < κ, every type in S1(A) is realized in M .

Theorem 2.5. Suppose M |= T is κ-saturated. Given a model N |= T with
|N | ≤ κ, a set A ⊆ N with |A| < κ, and a partial elementary map f : A → M ,
f extends to an elementary embedding N →M .

Proof. Let λ = |N \A|, and enumerate N \A as (nα)α<λ. For all α ≤ λ, write
Nα = A∪ {nβ | β < α}. Note that |Nα| ≤ |A|+ |α| < κ for all α < λ. We build
a sequence of partial elementary maps (fα)α≤λ by transfinite recursion, so that
dom(fα) = Nα.

Take f0 = f with domain N0 = A. It is partial elementary by hypothesis.
Given fα with α < λ, let pα = tp(nα/Nα). Then (fα)∗pα ∈ S1(f(Nα)).

Since |Nα| < κ, |f(Nα)| < κ, so (fα)∗pα is realized in M by some element mα.
Define fα+1 to be the map extending fα by mapping nα to mα. Check that
fα+1 is partial elementary.

When γ ≤ λ is a limit ordinal, define fγ =
⋃
α<γ fα. Check that fγ is partial

elementary and has domain Nγ .
Now fλ is a partial elementary map N = Nλ → M , i.e., an elementary

embedding N →M .

As a corollary, we find that the definition of κ-saturation, which only say
that 1-types are realized, implies that types in arbitrary contexts (of size at
most κ) are realized.

Corollary 2.6. Suppose M |= T is κ-saturated. For every set A ⊆ M with
|A| < κ and every context x with |x| ≤ κ, every type p ∈ Sx(A) is realized in
M .

Proof. Since p(x) is consistent, there is some model N |= T together with a
partial elementary map f : A → N and a tuple n ∈ Nx realizing f∗p(x). By
Löwenheim–Skolem, we may assume |N | = max(|A|, |x|) ≤ κ. Let g : f(A) →M
be the partial elementary map inverse to A. By Theorem 2.5, g extends to an
elementary embedding h : N → M . Then h(n) realizes h∗f∗p(x) = p(x), since
f and h are inverses.

Corollary 2.7 (Universality). Suppose M |= T is κ-saturated. For every model
N |= T with |N | ≤ κ, there is an elementary embedding N →M .

Proof. Take A = ∅ ⊆ N . Since T is complete, the empty function f : A → N
is partial elementary. By Theorem 2.5, f extends to an elementary embedding
N →M .
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Note that Corollary 2.7 implies that if M is κ-saturated, then κ ≤ |M |, since
any model of cardinality κ embeds in M . So the “most saturated” a model could
be is |M |-saturated.

Definition 2.8. M is saturated if it is |M |-saturated.

In the next theorem, we use the same proof strategy as in Theorem 2.5, but
instead of just constructing a map N →M , we want to go “back-and-forth” to
construct an isomorphism. For this reason, we need to assume M and N are
saturated and of the same cardinality.

Theorem 2.9. Suppose M |= T and N |= T are saturated with |M | = |N | = κ.
Let A ⊆ M be a subset with |A| < κ and f : A → N a partial elementary map.
Then f extends to an isomorphism M ∼= N .

Proof. Since |A| = |f(A)| < κ, we have |M \ A| = κ and |N \ f(A)| = κ.
Enumerate M \A as (mα)α<κ and N \f(A) as (nα)α<κ. We build a sequence of
partial elementary maps (fα)α≤κ extending f by transfinite recursion. Along the
way, we define sequences (m′

α)α<κ and (n′α)α<κ. If we set Mα = A∪ {mβ ,m
′
β |

β < α} and Nα = f(A) ∪ {nβ , n′β | β < α}, we ensure that dom(fα) = Mα and
ran(fα) = Nα. In particular, for α < κ, |Mα| ≤ |A| + 2|α| < κ and similarly
|Nα| < κ.

Take f0 = f . This has domain M0 = A and range N0 = f(A). It is partial
elementary by hypothesis.

Given fα with α < κ, let pα = tp(mα/Mα). Then (fα)∗pα ∈ S1(Nα). Since
|Nα| < κ, (fα)∗p is realized in N by some element n′α. Define gα to be the map
extending fα by mapping mα to n′α. Check that gα is partial elementary.

Write g−1
α for the partial elementary map with domain ran(gα) which is

inverse to gα. Now let qα = tp(nα/ran(gα)). Then (g−1
α )∗qα ∈ S1(dom(gα)).

Since |dom(gα)| = |Mα∪{mα}| < κ, (g−1
α )∗qα is realized in M by some element

m′
α. Define fα+1 to be the map extending gα by mapping m′

α to nα. Check that
fα+1 is partial elementary, and note dom(fα+1) = Mα∪{mα,m

′
α} = Mα+1 and

ran(fα+1) = Nα ∪ {nα, n′α} = Nα+1.
When γ ≤ λ is a limit ordinal, define fγ =

⋃
α<γ fα. Check that fγ is partial

elementary, dom(fγ) = Mγ , and ran(fγ) = Nγ .
Now fκ is a surjective partial elementary map M = Mκ → Nκ = N , i.e., an

isomorphism M ∼= N .

Corollary 2.10 (Homogeneity). Suppose M is a saturated model of T , A ⊆M
is a subset with |A| < |M |, and f : A → M is a partial elementary map. Then
f extends to an automorphism of M .

Proof. Take N = M in Theorem 2.9.

The significance of Corollary 2.10 is that inside a saturated model, “all struc-
tural properties” of a tuple are captured by its complete type.

Corollary 2.11 (Uniqueness). Any two saturated models of T of the same
cardinality are isomorphic.
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Proof. Suppose M and N are saturated models of T with |M | = |N |. Let
A = ∅ ⊆ M . Since T is complete, the empty function f : A → N is partial
elementary. By Theorem 2.9, f extends to an isomorphism M ∼= N .

Morley’s original proof of the categoricity theorem proceeds by showing that
if T is κ-categorical for some uncountable κ, then every uncountable model of
T is saturated. It follows from Corollary 2.11 that T is categorical in every un-
countable cardinal. As noted in the introduction, we will be following a different
proof strategy (though the fact that every uncountable model is saturated will
be a consequence of our proof).

2.3 Existence of saturated models

The question remains: do any saturated models exist? The first thing we need
to do is to realize lots of types at once.

Lemma 2.12. Let X ⊆ S1(A) with A ⊆M |= T . Then there is an elementary
extension M ⪯M ′ such that every type in X is realized in M ′. Further, we can
take |M ′| ≤ max(|M |, |X|).

Proof. Let κ = |X|, and enumerate X = (pα)α<κ. Write Xα = {pβ | β < α}.
We build an elementary chain of models (Mα)α≤κ by transfinite recursion such
that all of the types in Xα are realized in Mα, and |Mα| ≤ max(|M |, κ).

Take M0 = M . Since X0 = ∅, M0 vacuously realizes all types in X0. And
|M0| ≤ max(|M |, κ).

Given Mα with α < κ, by Lemma 2.3, we can find an elementary exten-
sion Mα ⪯ Mα+1 such that pα is realized in Mα+1 and |Mα+1| = |Mα| ≤
max(|M |, κ). Since the extension is elementary, all of the types in Xα are real-
ized in Mα+1 (by the same elements realizing them in Mα).

When γ ≤ κ is a limit ordinal, define Mγ =
⋃
α<γMα. Then Mγ is an

elementary extension of each Mα, so it realizes all the types in Xγ =
⋃
α<γ Xα.

And |Mγ | ≤ max(|γ|, supα<γ |Mα|) ≤ max(|M |, κ), since |γ| ≤ κ.
Now Mκ is an elementary extension of M realizing all types in Xκ = X, and

|Mκ| ≤ max(|M |, κ) = max(|M |, |X|).

Now let’s try to construct κ-saturated model. We can use Lemma 2.12 to
realize types, but upon passing to an elementary extension, we have new types
over new parameter sets to realize. So we need to build another elementary
chain. In order to “catch our tail”, we need the length of this elementary chain
to have length a regular cardinal ≥ κ.

Theorem 2.13. Let κ be an infinite cardinal. Then every model M |= T has a
κ-saturated elementary extension.

Proof. First, we may assume that κ is regular. If κ is singular, we use the
argument below to build a κ+-saturated elementary extension M ′ of M (since
κ+ is regular, Proposition 1.20). In particular, M ′ is κ-saturated.
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Now, for a regular cardinal κ, we build an elementary chain (Mα)α≤κ by
transfinite recursion. Let M0 = M . Given Mα, let Mα+1 be an elementary
extension of Mα realizing all types in S1(Mα) by Lemma 2.12. Given a limit
ordinal γ ≤ κ, let Mγ =

⋃
α<γMα.

To show that Mκ is κ-saturated, let A ⊆ Mκ with |A| < κ, and let p ∈
S1(A). First, I claim that there is some γ < κ such that A ⊆ Mγ . We have
Mκ =

⋃
α<κMα. For each a ∈ A, let f(a) be the least ordinal α such that

a ∈ Mα. Let γ = supa∈A f(a), so A ⊆ Mγ . Since κ is regular, |A| < κ, and
f(a) < κ for all a, γ < κ.

Now p ∈ S1(A) extends to a type p̂ ∈ S1(Mγ) (e.g., the complete type of
any realization of p in an elementary extension of Mγ). And p̂ is realized in
Mγ+1 ⪯Mκ, and hence in Mκ.

Unfortunately, the proof of Theorem 2.13 typically gives us a κ-saturated
model which has size much larger than κ. Even if we start with |M0| = ℵ0,
in the worst case we have |Mα+1| = |S1(Mα)| = 2|Mα|, so it seems the proof
requires us to iterate the powerset operation κ-many types. In order to get a
κ-saturated model of cardinality κ, we either need to make some set-theoretic
assumptions about κ or some model-theoretic assumptions about T .

Theorem 2.14. Suppose κ is a strongly inaccessible cardinal. Then T has a
saturated model of cardinality κ.

Proof. Since κ is strongly inaccessible, κ is regular. We show that in the proof
of Theorem 2.13, we can ensure that |Mα| < κ for all α < κ.

We start with a countableM0, so |M0| < κ. Given |Mα| = λ < κ, we can pick
Mα+1 so that |Mα+1| = |S1(Mα)| ≤ 2λ < κ, since κ is a strong limit cardinal.
For limit ordinals γ < κ, we have |

⋃
α<γMα| ≤ max(|γ|, supα<γ |Mα|) < κ,

where supα<γ |Mα| < κ because κ is regular.
Finally, |Mκ| ≤ max(|κ|, supα<κ |Mα|) = κ. Since Mκ is κ-saturated, in fact

|Mκ| = κ. Thus Mκ is saturated.

Instead of assuming that κ is really big, we could instead assume that we
just don’t have that many types to realize. This leads naturally the notion of
κ-stability.

Definition 2.15. Let κ be an infinite cardinal. T is κ-stable if for all sets A
with |A| ≤ κ and all n ∈ ω, we have |Sn(A)| ≤ κ.

In the definition of κ-stability, we count n-types (for arbitrary n) over arbi-
trary sets A. Let us take a moment to note that it is equivalent to count 1-types
over models. This is actually all we need for the construction of saturated mod-
els in Theorem 2.18 below.

For every n ∈ ω and every set A, there is a surjective map r : Sn+1(A) →
Sn(A) given by r(p) = {φ ∈ p | φ ∈ Fn(A)}. This map restricts a type to its
first n variables.
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Lemma 2.16. Let q ∈ Sn(A), and let (b1, . . . , bn) be any realization of q (in
any model containing A). With r : Sn+1(A) → Sn(A) defined as above, there is
a bijection between r−1({q}) = {p ∈ Sn+1(A) | r(p) = q} and S1(Ab1 . . . bn).

Proof. The bijection is given by p(x1, . . . , xn, xn+1) 7→ p(b1, . . . , bn, x).
In one direction, if r(p) = q, then p contains q, and p(b1, . . . , bn, x) contains

q(b1, . . . , bn) = TAb1...bn , so p(b1, . . . , bn, x) is a consistent type over Ab1 . . . bn.
Since p is complete, also p(b1, . . . , bn, x) is complete, so it is in S1(Ab1 . . . bn).

In the other direction, if p(b1, . . . , bn, x) ∈ S1(Ab1 . . . bn), then letting bn+1 be
any realization of this type, we have p(x1, . . . , xn, xn+1) = tp(b1, . . . , bn, bn+1/A),
so this type is in Sn+1(A).

Proposition 2.17. T is κ-stable if and only if for all models M |= T with
|M | ≤ κ, we have |S1(M)| ≤ κ.

Proof. One direction is trivial. For the other direction, we first note that if
A ⊆M |= T with |A| ≤ κ, we have |S1(A)| ≤ κ. Indeed, by Löwenheim–Skolem,
there is an elementary substructure M ′ ⪯M with A ⊆M ′ and |M ′| ≤ κ. Then
|S1(A)| ≤ |S1(M ′)| ≤ κ.

Next we prove by induction on n that |Sn(A)| ≤ κ whenever |A| ≤ κ. In the
base case, we always have |S0(A)| = 1. For the inductive step, we defined above

a surjective map r : Sn+1(A) → Sn(A). So |Sn+1(A)| =
∣∣∣⋃q∈Sn(A) r

−1({q})
∣∣∣.

For each q ∈ Sn(A), pick a realization (b1, . . . , bn) in some model containing A.
By Lemma 2.16, |r−1({q})| = |S1(Ab1 . . . bn)| ≤ κ, since |Ab1 . . . bn| ≤ κ+n = κ.

By induction, |Sn(A)| ≤ κ. So we have written Sn+1(A) as a union of at
most κ-many sets of size at most κ, and it follows that |Sn+1(A)| ≤ κ.

Theorem 2.18. Let κ be a regular cardinal and assume T is κ-stable. Then T
has a saturated model of cardinality κ.

Proof. We show that in the proof of Theorem 2.13, we can ensure that |Mα| ≤ κ
for all α < κ.

We start with an arbitrary M0 |= T with |M0| = κ. Given Mα, we can pick
Mα+1 so that |Mα+1| = |S1(Mα)| = κ, by κ-stability. For limit ordinals γ ≤ κ,
we have |

⋃
α<γMα| ≤ max(|γ|, supα<γ |Mα|) ≤ κ. So |Mγ | = κ.

In particular, |Mκ| = κ, and Mκ is κ-saturated, so Mκ is saturated.

Victor Harnik improved Theorem 2.18 by removing the hypothesis that κ
is regular. The proof is significantly more difficult, since the construction of
Theorem 2.13 relies crucially on regularity.

We end with two more sufficient conditions for the existence of saturated
models. The first is a set-theoretic hypothesis, the second is a model-theoretic
property of T .

Exercise 8. Suppose GCH holds at λ in the sense that 2λ = λ+. Show that T
has a saturated model of cardinality 2λ = λ+. In particular, if CH holds, then
T has a saturated model of cardinality 2ℵ0 = ℵ1.
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Hint: Mimic the proof of Theorem 2.13 with the regular cardinal κ = λ+ =
2λ. Build an elementary chain of models all of which have size κ. Instead
of realizing all types over Mα in Mα+1, just realize each p ∈ S1(A) for each
A ⊆ Mα with |A| < κ. Note that you have to do some cardinal arithmetic to
show that there are only at most κ-many such types.

Note that Theorem 2.14 and Exercise 8 both require strong set-theoretic
hypotheses: we cannot prove in ZFC that there are any strongly inaccessible
cardinals or that GCH holds at any cardinals. It follows from a theorem of Hugh
Woodin that there are theories T such that (assuming the consistency of a large
cardinal axiom) it is consistent with ZFC that T has no saturated models at all.

Definition 2.19. A theory T is small if |Sn(∅)| ≤ ℵ0 for all n ∈ ω.

Exercise 9. Show that T is small if and only if for any finite set A, |S1(A)| ≤ ℵ0.
Hint: Use Lemma 2.16.

Exercise 10 (if you have not seen this result before). Show that T has a
countable saturated model if and only if T is small.

Hint: Use Exercise 9. The strategy for building the saturated model is
similar to the strategy from the hint from Exercise 8 (but the cardinal arithmetic
is easier!).

The Ryll-Nardzewski Theorem says that T is ℵ0-categorical if and only if
|Sn(∅)| is finite for all n ∈ ω. Thus every ℵ0-categorical theory is small (and
indeed the unique countable model is saturated).

As a consequence of Exercise 9, we also have that every ℵ0-stable theory is
small. Neither of the converses is true: there are small ℵ0-stable theories which
are not ℵ0-categorical and small ℵ0-categorical theories which are not ℵ0-stable.
We will see some examples of these in Section 3.1.
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Interlude: The monster model

For many purposes, it is convenient to work inside a “large” saturated model
U |= T (U stands for “universe”). Taking “small” to mean “cardinality strictly
less than |U|”, the following are the most important properties ensured by sat-
uration:

(1) (Universality) Every complete type over a small subset of U is realized in
U . So we never have to move to elementary extensions to realize types.

(2) (Homogeneity) If B is a small set and a, a′ ∈ Ux with tp(b/A) = tp(b′/A),
then there is an automorphism σ ∈ Aut(U/B) such that σ(a) = a′. Here
Aut(U/B) is the group of all automorphisms of U which fix B pointwise.

Convention. (a) We fix a saturated model U |= T called the monster model.
The cardinality of U is “as large as we need it to be” (see below).

(b) We call a set or model small if its cardinality is strictly less than |U|.
Otherwise it is large.

(c) From now on, “model” means “small model”. The only large model we will
refer to is U . We assume every model is an elementary substructure of U ,
and every small set is a subset of U .

(d) A “formula with parameters”, when we do not specify a set that the pa-
rameters come from, means a formula with arbitrary parameters from U .
When φ(x) is a formula (possibly with parameters) and a ∈ Ux, we write
|= φ(a) instead of U |= φ(a).

Convention (c) is justified by Corollary 2.7, which implies that every small
model is isomorphic to an elementary substructure of U . By Löwenheim–Skolem,
every set is a subset of a small model, hence can be identified with a subset of
U . Further, in any particular situation (i.e., given any data involving families
of models, sets, types, etc.), we may assume all models and all sets are small,
simply by working in a larger monster model if necessary. This is what we mean
by assuming that |U| is “as large as we need it to be”.

What about existence of U? By the previous paragraph, we want not just
some saturated model of T , but arbitrarily large saturated models of T .

As we will see, when T is a stable theory (to be defined in Section 3.3
below), T is κ-stable for arbitrarily large cardinals κ, so T has arbitrarily large
saturated models by Theorem 2.18. So for stable theories, the existence of U
is well-justified (and most of the time, in this class, T is stable). In unstable
theories, there are several options:

(1) We could work in a set theory extending ZFC, e.g. by assuming the existence
of a proper class of inaccessible cardinals or assuming GCH.

(2) We could work in a class theory (like NBG) that admits proper classes as
first-class objects. Here we can build a saturated monster models whose
domain is a proper class.
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(3) We could work with “big” models or “special” models instead of saturated
models. These exist in ZFC and have the essential properties of universality
and homogeneity (but “small” now means much smaller than the cardinality
of U). The construction of big and special models is a bit more technical
than the construction of saturated models.

(4) We could view the monster model convention as “laziness” and check that
every proof using the monster model could be unwound to a proof using
small models only. Usually the unwound proofs will involve a lot more
bookkeeping, passing to elementary extensions, etc.

Let us make one observation about the monster model before moving on. If
φ(x) is a formula (possibly with parameters), we call the set

φ(U) = {a ∈ Ux ||= φ(a)}

a definable set. In the monster model, every definable set is either finite or
large. Indeed, suppose for contradiction that φ(U) is a small infinite set. Then
the partial type {φ(x)} ∪ {x ̸= a | a ∈ φ(U)} is over a small set of parameters,
and is consistent by compactness, hence realized in U , contradiction. It is useful
to keep this distinction in mind: we typically consider small sets of parameters,
while definable sets are large (or finite).
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3 Stability

3.1 Examples and non-examples by counting types

Example 3.1. Consider the theory T∞ of infinite sets. This theory is complete
and has quantifier elimination. For M |= T∞, we would like to count types in
S1(M). To characterize types in the singleton variable x, it suffices to consider
atomic formulas of the form x = m. If a type contains x = m, it is the realized
type tp(m/M). The only other type is the unique non-realized type containing
x ̸= m for all m ∈ M . Thus |S1(M)| = |M | + 1 = |M |. It follows that T∞ is
κ-stable for all infinite cardinals κ.

Example 3.2. Consider the theory VSk of non-trivial k-vector spaces. The
language is {+,−, 0, (c)c∈k}, where each symbol c is a unary function symbol for
multiplication by c ∈ k. This theory is complete and has quantifier elimination.

For M |= VSk, we would like to count types in S1(M). Terms over M in the
singleton variable x are k-linear combinations of x and the elements of M . An
atomic formula is an equality between terms. Since M is closed under linear
combinations, we find that every atomic formula is equivalent to cx = m, with
c ∈ k and m ∈ M . When c = 0, this is equivalent to 0 = m, which does not
depend on x. When c ̸= 0, we find that the atomic formula is equivalent to
x = m′ for some m′ ∈M .

Now the same analysis as in Example 3.1 applies. If a type contains x = m,
it is the realized type tp(m/M). The only other type is the unique non-realized
type containing x ̸= m for all m ∈ M . Thus |S1(M)| = |M | + 1 = |M |. It
follows that T∞ is κ-stable for all infinite cardinals κ.

Exercise 11. Show that the theory ACF0 (algebraically closed fields of char-
acteristic 0) is κ-stable for all infinite cardinals κ. You may use the fact that
ACF0 is complete and has quantifier elimination.

Example 3.3. Consider T = Th(Z,+,−, 0, (Dp)p prime). This is the complete
theory of the integers as an abelian group with additional unary relation symbols
Dp, where Z |= Dp(x) if and only if p | x.

It is a fact that T has quantifier elimination in this language. The Dp are
necessary for quantifier elimination: for example, without them, a formula of
the form

∃y (y + · · · + y︸ ︷︷ ︸
p times

= x)

is not equivalent to a quantifier-free formula.
I claim that T is κ-stable if and only if κ ≥ 2ℵ0 .
For any set Q of primes, the partial type

{Dp(x) | p ∈ Q} ∪ {¬Dp(x) | p /∈ Q}

is consistent by compactness. So there are already 2ℵ0-many pairwise contra-
dictory partial types over ∅. It follows that for any model M , |S1(M)| ≥ 2ℵ0 ,
and hence T is not κ-stable when κ < 2ℵ0 .
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On the other hand, let M be a model with |M | ≤ κ, where κ ≥ 2ℵ0 . For
every prime p, there is a definable equivalence relation on M defined by x ≡p y
if and only if Dp(x− y). T asserts that the equivalence relation ≡p has exactly
p classes (in the standard model, these are the classes of 0, 1, . . . , (p − 1)). So
m has representatives for the p distinct ≡p classes: call them mp

0, . . . ,m
p
p−1.

I claim that a type q ∈ S1(M) is either a realized type (and there are at most
κ-many of these) or it is completely determined by which ≡p-class the singleton
variable x is in for each prime p. That is, by which of the formulas Dp(x−mp

i )
is in q. The number of such choices is at most∏

p prime

p ≤
∏

p prime

ℵ0 = ℵℵ0
0 = 2ℵ0 ≤ κ.

Why is ℵℵ0
0 = 2ℵ0? Because 2ℵ0 ≤ ℵℵ0

0 ≤ (2ℵ0)ℵ0 = 2ℵ0·ℵ0 = 2ℵ0 .
Let’s prove the claim. To count types over M , it suffices to consider atomic

and negated atomic formulas, by quantifier elimination. When x is a singleton,
every atomic formula in context x is equivalent to nx = m or Dp(nx − m)
(equivalently, nx ≡p m) with n ∈ Z and m ∈M .

If a type q(x) ∈ S1(M) contains the formula nx = m with n ̸= 0, then
x ∈M , since T asserts that for all y and all n ̸= 0, there is at most one x such
that nx = y. So every non-realized type in S1(M) contains all the formulas
nx ̸= m for n ̸= 0.

Now let’s say we know, for each prime p, which of the formulas x ≡p mp
i

is in the non-realized type q(x). If x ≡p mp
i , then nx ≡p nmp

i . Now in M ,
nmp

i ≡p mp
j for some 0 ≤ j ≤ p − 1. So the formula Dp(nx −m) is in q if and

only if m ≡p mp
j in M . Thus q(x) is uniquely determined by the ≡p-class of x

for all primes p.

Example 3.4. Let L = {E}, and let T be the theory of an equivalence relation
with infinitely many infinite classes. T is complete and has quantifier elimina-
tion. Let M |= T with |M | ≤ κ. By quantifier elimination, to count types over
M we only need to consider atomic formulas x = m and xEm with m ∈ M .
There are three kinds of types in S1(M):

(1) The realized types, which contain x = m for some m ∈ M . There are at
most κ-many of these.

(2) Types which are not realized but contain xEm for some m ∈M . Since there
are at most κ-many equivalence classes in M , there are at most κ-many of
these.

(3) Types which contain ¬xEm for all m ∈M . There is exactly one such type.

It follows that |S1(M)| ≤ κ, so T is κ-stable for all infinite cardinals κ.

Exercise 12. Let L = {En | n ∈ ω}, and let T be the theory of binary refining
equivalence relations. By this, I mean that for all n ∈ ω, En has 2n equivalence
classes, each of which is infinite, and each En-class is partitioned into exactly 2
En+1-classes.
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(a) Show that T has quantifier elimination.

(b) Show that T is consistent and complete.

(c) Show that T is κ-stable if and only if κ ≥ 2ℵ0 .

Example 3.5. Let L = {En | n ∈ ω}, and let T be the theory of cross-cutting
equivalence relations, each of which has infinitely many infinite classes. By
“cross-cutting”, I mean that for all n ∈ ω, if we pick one Ei-class Ci for all
0 ≤ i ≤ n, the intersection

⋂n
i=0 Ci is non-empty. This can be expressed by the

following axioms, one for each n ∈ ω:

∀x0 . . . ∀xn∃y

(
n∧
i=0

yEnxi

)

A canonical example of a model for T is Fun(ω, ω) where fEng if and only
if f(n) = g(n).

T is complete and has quantifier elimination. Let M |= T with |M | ≤ κ. By
quantifier elimination, to count types over M we only need to consider atomic
formulas x = m and xEnm with m ∈M and n ∈ ω. We know there are at most
κ-many realized types. To give a non-realized type in the singleton variable x,
we need to specify, for each n ∈ ω, whether x is in one of the En-classes in M
(at most κ-many choices), or whether x is in a new En-class (just one choice).
It follows that |S1(M)| ≤ κ+ (κ+ 1)ℵ0 = κℵ0 .

On the other hand, if we take any model M of size κ such that each En has
κ-many equivalence classes (e.g. an elementary substructure of Fun(ω, κ) of size
κ containing a complete set of representatives for each En), then by compactness
each of the types described above is consistent, and we obtain |S1(M)| = κℵ0 .
It follows that M is κ-stable if and only if κℵ0 = κ.

Note that ℵℵ0
0 = 2ℵ0 > ℵ0. Stronger, if κ is a cardinal of cofinality ℵ0,

then κℵ0 = κcf(κ) > κ by Theorem 1.23. On the other hand, lots of cardinals
κ satisfy κℵ0 = κ: For any cardinal λ, let κ = λℵ0 . Then κℵ0 = (λℵ0)ℵ0 =
λℵ0·ℵ0 = λℵ0 = κ.

Exercise 13. Show that the theory T from Example 3.5 has quantifier elimi-
nation.

Example 3.6. Consider the theory DLO (dense linear orders without end-
points). This theory is complete and has quantifier elimination. It is also
ℵ0-categorical, hence small (by the Ryll-Nardzewski Theorem). But it is not
ℵ0-stable: we have |S1(Q)| = 2ℵ0 . To see this, note that Q ⪯ R and distinct
real numbers have distinct 1-types over Q: For any r < r′ in R, there is some
q ∈ Q with r < q < r′. Then (x < q) ∈ tp(r/Q) but ¬(x < q) ∈ tp(r′/Q).

It will follow from the results of the next section that DLO is not κ-stable
for any infinite κ.

Example 3.7. Consider the complete theory of the random graph, TRG. This
theory is complete and has quantifier elimination. It is also ℵ0-categorical, hence
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small (by the Ryll-Nardzewski Theorem). But it is not κ-stable for any infinite
κ: Let M be a model with |M | = κ. For any subset A ⊆M , the partial type

{(xRa) | a ∈ A} ∪ {¬(xRa) | a /∈ A}

is consistent, by compactness and the extension properties of the random graph.
This gives 2κ-many distinct types in S1(M).

Having seen lots of examples and non-examples of κ-stability, we can ask:
Where does instability come from? Can we understand in a more concrete way
the phenomena that causes some theories to have lots of types and others to
have few types?

One observation is that in DLO and TRG, it suffices to look at instances of
a single formula φ(x; y) (namely x > y in DLO and xRy in TRG) to find 2ℵ0 -
many types over a countable set. In both cases, we can explain this by observing
that we can build a “complete binary decision tree” for instances φ(x;m) with
m ∈ M . With only countably many parameters (corresponding to the nodes
of the tree), we can obtain continuum-many types (corresponding to the paths
through the tree). We will make this more precise in the next section.

On the other hand, in Examples 3.3 and 3.5, we can find complete decision
trees (corresponding to picking equivalence classes for different equivalence re-
lations), but we have to use instances of different formulas at each level of the
tree. This allows us to show that these theories are not ℵ0-stable, but they still
manage to be κ-stable for larger cardinals κ. This suggests that the instability
here is a global phenomenon, in the sense that it requires us to think about all
formulas in the language. Locally (i.e., concentrating on one formula at a time),
we just see individual equivalence relations, and the behavior of these theories
looks much more like that of Example 3.4, where we cannot find any complete
decision trees.

All this suggests that it we should develop a language for studying T locally:
one formula at a time. This is what we do in the next section.

3.2 Stable formulas

A partitioned formula is a formula φ(x; y), where the variable context has
been partitioned into two finite disjoint tuples x and y. We call x the object
variables and y the parameter variables.

We write φopp(y;x) for the same formula as φ(x; y), but partitioned so that
y is the tuple of object variables and x is the tuple of parameter variables.

Let φ(x; y) be a partitioned formula. A φ-formula over a set B is a formula
φ(x; b) or ¬φ(x; b) with b ∈ By. We write Fφx (B) for the set of all φ-formulas
over B.

A partial φ-type over B is a set of φ-formulas in Fφx (B). A partial φ-type
Σ(x) over B is consistent if Σ(x) ∪ TB is satisfiable. It is complete if it is
consistent and φ(x, b) ∈ Σ(x) or ¬φ(x, b) ∈ Σ(x) for all b ∈ By. We write Sφx (B)
for the space of complete φ-types over B. We write tpφ(a/B) for the complete
φ-type of a over B.
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Definition 3.8. Let κ be an infinite cardinal and φ(x; y) a partitioned formula.
We say φ(x; y) is κ-stable (with respect to T ) if |Sφx (B)| ≤ κ for all sets B with
|B| ≤ κ.

A (set-theoretic) tree is a partially ordered set (T ,≤) such that for any
t ∈ T , the set ↓t = {s ∈ T | s ≤ t} is well-ordered by ≤.

For any ordinal α and any set X, we abuse notation by writing X<α for the
set {f : β → X | β < α} =

⋃
β<α Fun(β,X). The set X<α has a natural tree

structure given by the subset relation f ⊆ g (equivalently, dom(f) ≤ dom(g)
and g|dom(f) = f). For any f ∈ X<α with dom(f) = β, the set ↓f consists of
{f |γ | γ < β}, so it is well-ordered with order-type β.

In addition to functions, we sometimes think of elements of X<α as sequences
from X (indexed by ordinals < α) or visually as elements of a |X|-branching
tree of height α. Given a node f ∈ X<α with dom(f) = β, and given x ∈ X,
we sometimes write fx for the “child” of f defined by f ∪ {(β, x)}.

We also write Xα for the set Fun(α,X). In the context of trees, we think
of an element g ∈ Xα as describing a path through the tree X<α, visiting the
nodes g|β for all β < α, or as a “leaf” of the tree.

Definition 3.9. For an ordinal α, a binary tree of height α for φ(x; y)
consists of two families of tuples (af )f∈2α ∈ Ux and (bg)g∈2<α ∈ Uy, such that
for all f ∈ 2α and all β < α we have

|= φ(af ; bf |β ) iff f(β) = 1.

Note that the existence of a binary tree of height α for φ(x; y) is expressed
by the following partial type Γα((xf )f∈2α , (yg)g∈2<α):

{φ(xf ; yf |β) | β < α, f(β) = 1} ∪ {¬φ(xf ; yf |β) | β < α, f(β) = 0}.

For finite n, Γn is finite, so we identity Γn with the single formula obtained by
taking the conjunction of these finitely many formulas.

Proposition 3.10 (Binary tree property). For a partitioned formula φ(x; y),
the following are equivalent:

(1) For all ordinals α, φ admits a binary tree of height α.

(2) φ admits a binary tree of height ω.

(3) For all n < ω, φ admits a binary tree of height n.

(4) For all n < ω, φ admits a binary tree of height n in every model of T .

Proof. (1) ⇒ (2) is trivial.
(2) ⇒ (3): Suppose (af )f∈2ω and (bg)g∈2<ω is a binary tree of height ω for

φ. Fix n ∈ ω. For each h ∈ 2n, pick some h∗ ∈ 2ω extending h. Then (ah∗)h∈2n

and (bg)g∈2<n is a binary tree of height n for φ.
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(3) ⇒ (4): For any model M |= T , M has a binary tree for φ of height n if
and only if

M |= ∃(xf )f∈2n∃(yg)g∈2<n Γn((xf )f∈2n , (yg)g∈2<n).

Since T is complete, if U satisfies this sentence, then every model satisfies this
sentence.

(4) ⇒ (1): It suffices to show that the partial type Γα defined above is
consistent with T . A finite subset ∆ ⊆ Γα mentions only finitely many of the
variables xf and yg. By choosing n large enough, we can realize ∆ in a binary
tree for φ of height n. By compactness, Γα consistent.

Exercise 14. In the proof of (4) ⇒ (1) above, I wrote “by choosing n large
enough, we can realize ∆ in a binary tree for φ of height n.” Fill in the details.

Definition 3.11. We say that φ(x; y) has the binary tree property (with
respect to T ) if the equivalent conditions of Proposition 3.10 are satisfied.

It is easy to see that if φ has the binary tree property, then (using a binary
tree of height ω), φ is not ℵ0-stable. With a little cardinal arithmetic, we can
show φ is not κ-stable for any infinite κ.

Proposition 3.12. Suppose the partitioned formula φ(x; y) has the binary tree
property with respect to T . Then for every infinite cardinal κ, φ(x; y) is not
κ-stable.

Proof. Suppose φ(x; y) has the binary tree property, and let κ be an infinite
cardinal. Let λ be the least cardinal such that 2λ > κ. Such a cardinal exists
since the class of such cardinals is non-empty; in particular, it contains κ, so
λ ≤ κ. By definition of λ, 2µ ≤ κ for all µ < λ, so also:

|2<λ| =

∣∣∣∣∣ ⋃
α<λ

Fun(α, 2)

∣∣∣∣∣ ≤ max(λ, sup
α<λ

2|α|) ≤ κ.

Since φ(x; y) has the binary tree property, we can find (ag)g∈2λ ∈ Ux and
(bf )f∈2<λ ∈ Uy such that for all g ∈ 2λ and all β < λ we have

M |= φ(ag; bg|β ) iff g(β) = 1.

Let B be the set of all elements of U appearing in the tuples bf for f ∈ 2<λ.
Then |B| ≤ κ.

I claim that for distinct g, h ∈ 2λ, tp(ag/B) ̸= tp(ah/B). Indeed, let α < λ
be the least ordinal such that g(α) ̸= h(α). Without loss of generality, g(α) = 1
and h(α) = 0. Let ℓ = g|α = h|α. Then φ(x; bℓ) ∈ tp(ag/B), but ¬φ(x; bℓ) ∈
tp(ah/B).

This shows that |S1(B)| ≥ 2λ > κ. So φ is not κ-stable.
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We would now like to go the other direction and show that if φ(x; y) does
not have the binary tree property, then φ is κ-stable for all infinite κ. In
order to count complete φ-types over B, we note that p ∈ Sφx (B) is completely
determined by the set Yp = {b ∈ By | φ(x; b) ∈ p}. In the worst case, the
number of such sets Yp is |P(By)| = 2|B|. But what if every set Yp were itself
defined by a formula over B? The number of subsets of By which are definable
over B is at most |Fy(B)| = |B| (when B is infinite). This leads to the notion
of definability of types.

Definition 3.13. Let φ(x; y) be a partitioned formula, and let A and B be sets.
A complete φ-type p ∈ Sφx (B) is definable over A if there is some formula
ψ(y) ∈ Fy(A) such that for all b ∈ By, φ(x; b) ∈ p if and only if |= ψ(b). If
p ∈ Sφx (B) is definable over B, we just say that p is definable.

Example 3.14. Let T = DLO, and let φ(x; y) be x > y. For each type
p ∈ Sφx (Q), the set Yp = {b ∈ Q | (x > b) ∈ p} is a downwards-closed subset
of Q. By compactness, every downwards-closed set corresponds to a consistent
φ-type. We can classify them as follows:

(1) For each a ∈ Q, we have the realized type pa, with

Ypa = {b ∈ Q | b < a}.

This type is definable by y < a.

(2) For each a ∈ Q, we have the type pa+ “infinitesimally above” a, with

Ypa+ = {b ∈ Q | b ≤ a}.

This type is definable by y ≤ a.

(3) We have the types “at ±∞”, p∞ and p−∞, with

Yp∞ = Q
Yp−∞ = ∅.

These types are definable by ⊤ and ⊥, respectively.

(4) For each r ∈ R, we have the type pr, with

Ypr = {b ∈ Q | b < r}.

These types are not definable. By quantifier elimination, a definable subset
of Q with parameters in Q is a finite boolean combination of singletons {a}
and intervals (a,∞) with a ∈ Q. The set (−∞, r) ∩Q cannot be written as
such a boolean combination.

In order to show that types are definable, it is useful to introduce Shelah’s
local 2-rank. This is just one of many notions of rank used in model theory
(we will see some more later in this course). Many notions of rank measure
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how much a definable set can be “split” into smaller definable pieces. In this
case, the name local comes from the fact that we only use φ-formulas to do the
“splitting”, and the number 2 refers to the fact that the rank goes up when we
can split a definable set into two pieces. The connection with the binary tree
property is that repeated splitting a definable set into two pieces by φ-formulas
is equivalent to building a binary tree for φ (see Exercise 15 below).

Definition 3.15. Let φ(x; y) be a partitioned formula. For any formula with
parameters θ(x), we define the local 2-rank of θ, Rφ2 (θ), recursively as follows:

(1) Rφ2 (θ) ≥ 0 if and only if θ is satisfiable.

(2) Rφ2 (θ) ≥ n+ 1 if and only if there is some b ∈ Uy such that

Rφ2 (θ ∧ φ(x; b)) ≥ n and Rφ2 (θ ∧ ¬φ(x; b)) ≥ n.

If θ is not satisfiable, we set Rφ2 (θ) = −∞. If Rφ2 (θ) ≥ n for all n, we set
Rφ2 (θ) = ∞. Otherwise, we set Rφ2 (θ) to be the maximal n ∈ ω such that
Rφ2 (θ) ≥ n.

Exercise 15. Show that we can equivalently define the local 2-rank as follows:
Rφ2 (θ) ≥ n if and only if there is a binary tree for φ(x; y) of height n, consisting
of tuples (af )f∈2n and (bg)g∈2<n such that |= θ(af ) for all f ∈ 2n.

Proposition 3.16. Suppose φ does not have the binary tree property. Then for
any set B, every type in Sφx (B) is definable.

Proof. Since φ does not have the binary tree property, there is some N ∈ ω such
that φ does not admit a binary tree of height N . It follows from Exercise 15
that Rφ2 (θ(x)) < N for all θ(x).

Let p ∈ Sφx (B). Define

Θ =

{
n∧
i=1

ψi | n ∈ ω, ψ1, . . . , ψn ∈ p

}
,

So Θ is the set of all finite conjunctions of φ-formulas in p. Choose a formula
θ(x) ∈ Θ of minimal Rφ2 -rank m.

For any b ∈ By, I claim that φ(x; b) ∈ p if and only if Rφ2 (θ(x)∧φ(x; b)) ≥ m.
If φ(x; b) ∈ p, then θ(x) ∧ φ(x; b) ∈ Θ, so Rφ2 (θ(x) ∧ φ(x; b)) ≥ m by mini-

mality of m. On the other hand, if φ(x; b) /∈ p, suppose for contradiction that
Rφ2 (θ(x) ∧ φ(x; b)) ≥ m. Then θ(x) ∧¬φ(x; b) ∈ Θ, so Rφ2 (θ(x) ∧¬φ(x; b)) ≥ m
by minimality of m. Then by definition of the local 2-rank, Rφ2 (θ(x)) ≥ m+ 1,
contradiction.

It remains to show that the condition on b that Rφ2 (θ(x) ∧ φ(x; b)) ≥ m is
definable. Consider the formula ψ(y):

∃(xf )f∈2m∃(yg)g∈2<m

Γm((xf )f∈2m , (yg)g∈2<m) ∧
∧
f∈2m

θ(xf ) ∧ φ(xf , y)

 .
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The formula ψ(y) expresses that there is a binary tree for φ of height m
such that all the leaves (af )f∈2m satisfy θ(x) ∧ φ(x; y). By Exercise 15, this is
equivalent to Rφ2 (θ(x) ∧ φ(x; y)) ≥ m. The only parameters used in ψ(y) are
those parameters from B appearing in θ(x). So ψ(y) defines p over B.

Theorem 3.17 (Stable formula theorem). Let φ(x; y) be a partitioned formula.
The following are equivalent:

(1) φ does not have the binary tree property.

(2) φ is κ-stable for some infinite cardinal κ.

(3) φ is κ-stable for all infinite cardinals κ.

(4) Every complete φ-type over any set B is definable.

Proof. (3)⇒(2): Trivial.
(2)⇒(1): This is the contrapositive of Proposition 3.12.
(1)⇒(4): This is Proposition 3.16.
(4)⇒(3): Let κ be an infinite cardinal and B a set with |B| ≤ κ. Every

type p ∈ Sφx (B) is definable over B by a formula in Fy(B). Since |Fy(B)| ≤ κ,
|Sφx (B)| ≤ κ.

Definition 3.18. We say that φ(x; y) is stable (relative to T ) if the equivalent
conditions of Theorem 3.17 are satisfied.

3.3 Stable theories

Definition 3.19. T is stable if every partitioned formula φ(x; y) is stable
relative to T .

Theorem 3.20. The following are equivalent:

(1) T is stable.

(2) T is κ-stable for some infinite cardinal κ.

(3) T is κ-stable for all infinite cardinals κ such that κℵ0 = κ.

Proof. (1)⇒(3): Let κ be such that κℵ0 = κ. Let A be a set with |A| ≤ κ. The
map Sx(A) →

∏
φ(x;y) S

φ
x (A) given by p 7→ (p|φ)φ(x;y) is injective, since if p ̸= q,

then they differ on some formula over A. It suffices to consider parameter tuples
y = (y1, . . . , yn) with n ∈ ω, so the number of partitioned formulas φ(x; y) in
the product is ℵ0. Each such formula is κ-stable, so by Theorem 3.17:

|Sx(A)| ≤
∏
φ(x;y)

|Sφx (A)| ≤
∏
φ(x;y)

κ = κℵ0 = κ.

(3)⇒(2): For any cardinal λ ≥ 2, let κ = λℵ0 . Then κ is infinite and we
have:

κℵ0 = (λℵ0)ℵ0 = λℵ0·ℵ0 = λℵ0 = κ.
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By (3), T is κ-stable.
(2)⇒(1): Let φ(x; y) be a partitioned formula. Let κ be an infinite cardinal

such that T is κ-stable, and let A be a set with |A| ≤ κ. The restriction map
Sx(A) → Sφx (A) is surjective, so we have |Sφx (A)| ≤ |Sx(A)| ≤ κ. Since A was
arbitrary, φ(x; y) is κ-stable, hence stable by Theorem 3.17.

The amazing thing about Theorem 3.20 is that conditions (2) and (3), which
are about counting types over possibly uncountable parameter sets, and which
seem like they could depend on facts about cardinal arithmetic, and hence be
independent of ZFC, turn out to be equivalent to condition (1), which is in turn
equivalent to the condition that no formula φ(x; y) has the binary tree property
relative to T . The binary tree property can be checked by asking whether T
proves that φ(x; y) has binary trees of every finite height. This is a pattern in
stability theory: looking at phenomena that occur in large uncountable models
can lead us to identify very concrete combinatorial equivalents of these phenom-
ena, which end up being useful dividing lines in the complexity of theories.

The proof of (3)⇒(2) in Theorem 3.20 shows more: For all λ, we have
λ ≤ λℵ0 , so if T is stable, then there are arbitrarily large cardinals κ such that
T is κ-stable.

Corollary 3.21. Suppose T is stable. Then every model of T has a saturated
elementary extension.

Proof. Suppose M |= T and let λ = |M |. Then there is a cardinal κ ≥ λ with
κℵ0 = κ (e.g. κ = λℵ0 works). Since T is κ-stable, T has a saturated model
M ′ of cardinality κ by Theorem 2.18. By Corollary 2.7, there is an elementary
embedding M →M ′.

For a set A (large or small), a definable subset of Ax is a set of the form
φ(A) = {a ∈ Ax | U |= φ(a)} for some formula φ with parameters.

Definition 3.22. A set A (large or small) is stably embedded if every defin-
able subset of Ax (for every context x) is definable over A. That is, for every
formula φ(x; b) with parameters b ∈ Uy, there is a formula ψ(x) over A such
that φ(A, b) = ψ(A).

Corollary 3.23. Suppose T is stable. Then every set is stably embedded.

Proof. Let A be a set and φ(x; b) a formula with parameters b ∈ Uy. Consider
p = tpφ

opp

(b/A). Since T is stable, φopp(y;x) is a stable formula, so p is definable
over A. That is, there is a formula ψ(x) over A such that ψ(A) = φopp(b;A) =
φ(A; b).

Example 3.24. Recall that ACF0 is a stable theory. Suppose we are inter-
ested in rational points (a1, . . . , an) ∈ Qn such that f(a1, . . . , an) = 0, where
f(x1, . . . , xn) ∈ C[x1, . . . , xn] is a polynomial in n variables over the complex
numbers. Since Q is stably embedded in C, there is a formula φ(x1, . . . , xn) over
Q (which by quantifier elimination is a boolean combination of polynomial equa-
tions over Q) defining (in C) the set of rational solutions to f(x1, . . . , xn) = 0.
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4 The order property and indiscernibles

In this section, we will explore some additional equivalents to stability and
introduce an important tool: indiscernibles. The section will culminate with
our first result about κ-categorical theories for uncountable κ. We begin with
a proof a Ramsey’s Theorem, since many of the results of this section rely on
this result of combinatorial set theory.

Given a set X and k ∈ ω, we write [X]k for the set of subsets of X of size
exactly k. Ramsey’s Theorem is a statement about functions c : [X]k → r with
r ∈ ω. We describe such a function as a “coloring” of each set in [X]k by one of
r colors. A subset H ⊆ X is homogeneous for c if c|[H]k is a constant function,

i.e., every set in [H]k gets the same color.

Theorem 4.1 (Ramsey). Let X be an infinite set. For any r, k ∈ ω and any
function c : [X]k → r, there is an infinite H ⊆ X which is homogeneous for c.

Proof. We proceed by induction on k. The base case k = 1 is the “infinitary
pigeonhole principle”: if we partition an infinite set into finitely many pieces,
one of the pieces must be infinite (since a finite union of finite sets is finite). So
given c : X → r, we can take H to be one of the sets c−1({i}) for i ∈ r.

For the inductive step, we are given c : [X]k+1 → r. We define a chain of
infinite sets X0 ⊃ X1 ⊃ X2 ⊃ . . . and elements xi ∈ Xi by recursion. Let
X0 = X. Given Xi, pick any xi ∈ Xi and define a function ci : [Xi \ {xi}]k → r
by ci(Z) = c(Z ∪ {xi}). By the inductive hypothesis, there is an infinite set
Xi+1 ⊆ Xi \ {xi} which is homogeneous for ci.

Let Y = {xi | i ∈ ω}. For each i ∈ ω, let ki ∈ r be the constant value
of ci on Xi+1. Let d : Y → r be the function d(xi) = ki. By the infinitary
pigeonhole principle, there is some infinite H ⊆ Y which is homogeneous for d.
That is, there is some k∗ ∈ r such that ki = k∗ whenever xi ∈ H. Now for
any Z ∈ [H]k, we can write Z = {xi1 , . . . , xik+1

} with i1 < · · · < ik+1. Since
Z\{xi1} ⊆ Xi1+1 ⊂ Xi1\{xi1}, we have c(Z) = ci1({xi2 , . . . , xik+1

}) = ki1 = k∗.
So H is homogeneous for c.

Exercise 16. Let (X,≤) be an infinite linearly ordered set. Show that there
is either an infinite increasing sequence x0 < x1 < x2 < . . . or an infinite
decreasing sequence x0 > x1 > x2 > . . . in X.

Hint: Choose a well-ordering ⪯ of X. For each pair {x, y} ∈ [X]2 color
{x, y} according to whether ⪯ agrees with ≤. Apply Ramsey’s Theorem.

4.1 The order property

Definition 4.2. Let φ(x; y) be a partitioned formula, and let (I,≤) be a linear
order. We say that φ(x; y) has the order property indexed by I (with respect
to T ) if there exist (ai)i∈I ∈ Ux and (bj)j∈I ∈ Uy such that for all i, j ∈ I, we
have:

|= φ(ai; bj) iff i ≤ j.
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We say that φ(x; y) has the order property (with respect to T ) if it has the
order property indexed by ω.

Example 4.3. Let T be DLO, and let φ(x; y) be the formula x ≤ y. Let
(ai)i∈ω be any increasing sequence in U . Then taking bi = ai for all i, (ai)i∈ω
and (bi)i∈ω witness the order property for φ.

Example 4.4. Let T be TRG, and let φ(x; y) be the formula xRy. Let (ai)i∈ω
be any sequence of distinct elements in U . For all j ∈ ω, the partial type
{aiRy | i ≤ j}∪{¬aiRy | i > j} is consistent by compactness and the extension
property for random graphs. Let bj realize this partial type. Then (ai)i∈ω and
(bi)i∈ω witness the order property for φ.

Note that for any set S ⊆ ω, the partial type {aiRy | i ∈ S}∪{¬aiRy | i /∈ S}
is consistent, by the same argument. Thus we can find sequences (ai)i∈ω and
(bS)S⊆ω witnessing a stronger property of φ, the independence property:

|= φ(ai; bS) iff i ∈ S.

The order property is the special case of the independence property where we
only consider sets S of the form {i ∈ ω | i ≤ j}.

Proposition 4.5 (Order property). For a partitioned formula φ(x; y), the fol-
lowing are equivalent:

(1) For every linear order (I,≤), φ has the order property indexed by I.

(2) φ has the order property (indexed by ω).

(3) For all n < ω, φ has the order property indexed by n.

(4) For all n < ω, φ has the order property indexed by n in every model of T .

The proof is just like the proof of Proposition 3.10.

Proposition 4.6. Let φ(x; y) be a partitioned formula.

(1) In Definition 4.2, it is equivalent to require |= φ(ai; bj) iff i < j.

(2) φ has the order property if and only if ¬φ(x; y) has the order property.

(3) φ has the order property if and only if φopp has the order property.

(4) If (φ1∨φ2)(x; y) has the order property, then φ1(x; y) has the order property
or φ2(x; y) has the order property.

Proof. (1) If (ai)i∈ω and (bj)j∈ω satisfy |= φ(ai; bj) iff i ≤ j, then (ai+1)i∈ω
and (bj)j∈ω satisfy |= φ(ai+1; bj) iff i < j.

Similarly, if (ai)i∈ω and (bj)j∈ω satisfy |= φ(ai; bj) iff i < j, then (ai)i∈ω
and (bj+1)j∈ω satisfy |= φ(ai; bj+1) iff i ≤ j.
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(2) If (ai)i∈ω and (bj)j∈ω satisfy |= φ(ai; bj) iff i ≤ j, then |= ¬φ(ai; bj) iff
i > j. Thus (ai)i∈ω and (bj)j∈ω witness the order property for ¬φ indexed
by ω∗ (ω with the reverse of the usual order) in the equivalent strict form
of (1).

For the converse, observe that ¬¬φ ≡ φ.

(3) If (ai)i∈ω and (bj)j∈ω satisfy |= φ(ai; bj) iff i ≤ j, then |= φopp(bj ; ai) iff
j ≥ i. Thus (bj)j∈ω and (ai)i∈ω witness the order property for φopp(y;x)
indexed by ω∗.

For the converse, observe that (φopp)opp = φ.

(4) Suppose (ai)i∈ω and (bj)j∈ω satisfy |= (φ1∨φ2)(ai; bj) iff i < j. By Ramsey’s
Theorem (coloring [ω]2 by 2 colors, depending on whether or not φ1 holds),
there is an infinite subset H ⊆ ω and some k ∈ {1, 2} such that for all i < j
in H, |= φk(ai, bj). On the other hand, for all i ≥ j in H, ̸|= (φ1∨φ2)(ai; bj),
so ̸|= φk(ai; bj). Thus (ai)i∈H and (bj)j∈H witness the order property for
φk.

Theorem 4.7 (Stable formula theorem, continued). Let φ(x; y) be a partitioned
formula. The following are equivalent:

(1) φ is stable.

(2) φ does not have the order property.

(3) For every model M |= T , every φ-type in Sφx (M) is definable by a formula
ψ(y) which is a boolean combination of φopp-formulas.

Proof. (1)⇒(2): Assuming φ has the order property, we show that φ is unstable.
By Proposition 4.5, we can find (ar)r∈R and (bs)s∈R such that |= φ(ar, bs) if
and only if r ≤ s. Let B be the set of elements appearing in the tuples (bs)s∈Q.
Then B is countable, but when r ̸= r′ in R \ Q, tpφ(ar/B) ̸= tpφ(ar′/B). So
|Sφx (B)| ≥ 2ℵ0 , and φ is unstable.

(2)⇒(3): Assume that there is a model M |= T and a type p ∈ Sφx (M) which
is not definable over M by any boolean combination of φopp-formulas. We show
that φ has the order property. Let a∗ ∈ Ux be a realization of p.

Note that for any finite subset B ⊆M , there are only finitely many tuples in
By, so a φ-type q ∈ Sφx (B) is a finite set of formulas and can be identified with
its conjunction θq(x). Now since p is consistent, U |= ∃x θq(x), so M |= ∃x θq(x),
and hence q is realized in M . This is where we use the assumption that M is a
model.

I claim that for any finite sequence a0, . . . , an−1 ∈Mx, there are b, b′ ∈My

such that |= φ(a∗, b), |= ¬φ(a∗, b′), and |= φ(ai, b) ↔ φ(ai, b
′) for all i < n. If

not, then for every set S ⊆ n, either all b ∈My satisfying∧
i∈S

φ(ai, y) ∧
∧
i/∈S

¬φ(ai, y)
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satisfy φ(a∗, y) (in which case we call S good), or all such b satisfy ¬φ(a∗, y).
Then p = tpφ(a∗/M) is definable over M by

∨
S good

(∧
i∈S

φ(ai, y) ∧
∧
i/∈S

¬φ(ai, y)

)
.

This is a boolean combination of φopp-formulas, contradicting the choice of p.
We now construct sequences (bi)i∈ω and (b′i)i∈ω in My, and (ai)i∈ω in Mx,

by recursion. Suppose we are given (bi)i<n, (b′i)i<n, and (ai)i<n. By the
claim, there are bn, b

′
n ∈ My such that |= φ(a∗, bn) and |= ¬φ(a∗, b′n) and

|= φ(ai, bn) ↔ φ(ai, b
′
n) for all i < n. Let an ∈Mx realize tpφ(a∗/b0b

′
0 . . . bnb

′
n).

The result of our construction is that that whenever i ≥ j, we have

|= φ(ai, bj) and |= ¬φ(ai, b
′
j),

but whenever i < j, we have

|= φ(ai, bj) if and only if |= φ(ai, b
′
j).

By Ramsey’s Theorem (coloring pairs from ω by 2 colors), there is an infinite
set H ⊆ ω such that either:

(1) For all i < j ∈ H, |= φ(ai, bj) and |= φ(ai, b
′
j). In this case, the sequences

(ai)i∈H and (b′i)i∈H witness the order property for φ.

(2) For all i < j ∈ H, |= ¬φ(ai, bj) and |= ¬φ(ai, b
′
j). In this case, the sequences

(ai)i∈H and (bi)i∈H witness the order property for φ.

(3)⇒(1): We already know that stability is equivalent to the condition that
every complete φ-type over a set B is definable. We only need to show that it
suffices to check this over models.

Let B be an arbitrary set with |B| ≤ κ. Let M be a model containing B
with |M | ≤ κ. Since every type in Sφx (M) is definable over M , we have

|Sφx (B)| ≤ |Sφx (M)| ≤ |Fφx (M)| = |M | ≤ κ.

Thus φ is stable.

With a very slightly more complicated argument, Theorem 4.7(3) can be
improved to say that every complete φ-type over a model is definable by a
positive Boolean combination of φopp-formulas (not using ¬).

One consequence of the order property characterization of stability is that
it is easier to prove closure properties of the class of stable formulas using
Proposition 4.6.

Corollary 4.8. If φ is stable, so is φopp. Every boolean combination of stable
formulas is stable.
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Proof. The first statement is a direct application of Proposition 4.6(3). For the
second statement, note that stability is unaffected by adding new variables to
the context of a formula, so we may assume that all formulas in our boolean
combination have the same partitioned context (x; y). Now by DeMorgan’s Law
φ ∧ ψ ≡ ¬(¬φ ∨ ¬φ), we may assume that our boolean combination is built up
using only negations and disjunctions. By Proposition 4.6(2), the negation of a
stable formula is stable, and by Proposition 4.6(4), the disjunction of two stable
formulas (in the same context) is stable.

4.2 Indiscernibles

Definition 4.9. Let (I,≤) be a linear order, let I = (ai)i∈I be a sequence from
Ux indexed by I, and let B be a set. We say that I is an sequence of order
indiscernibles over B (or a B-indiscernible sequence) if for all n ∈ ω, all
i1 < · · · < in and j1 < . . . jn in I, and all LB-formulas φ(x1, . . . , xn) (where
each xi is a tuple of length |x|), we have

|= φ(ai1 , . . . , ain) iff |= φ(aj1 , . . . , ajn).

We say that I is a sequence of set indiscernibles over B (or a B-indiscernible
set) if the same is true for any distinct i1, . . . , in and distinct j1, . . . , jn in I (not
necessarily in increasing order).

When no set B is mentioned, we assume B = ∅.

Example 4.10. Let T = DLO. By quantifier elimination, every strictly in-
creasing sequence (ai)i∈ω of elements of U is an indiscernible sequence (over ∅).
Such a sequence is not an indiscernible set: letting φ(x1, x2) be x1 < x2, we
have |= φ(a0, a1) but |= ¬φ(a1, a0).

On the other hand, with T = Th(Z;<) the strictly increasing sequence
0, 1, 2, . . . is not indiscernible: letting φ(x1, x2) be ∃y (x1 < y ∧ y < x2), we
have |= ¬φ(0, 1), but |= φ(0, 2).

Example 4.11. Let T be the theory of an equivalence relation with infinitely
many infinite classes. The following are all indiscernible sets:

• Any constant sequence (ai)i∈ω, with ai = a for some a ∈ U .

• Any sequence of inequivalent elements (ai)i∈ω with ¬(aiEaj) for all i ̸= j.

• Any sequence of distinct equivalent elements (ai)i∈ω with (aiEaj) and
ai ̸= aj for all i ̸= j.

Exercise 17. With T as in Example 4.11, show that every indiscernible se-
quence in U1 fits into one of those three cases. Now give a similar classification
of indiscernible sequences in Un for arbitrary n.

Example 4.12. In a vector space, any sequence of linearly independent ele-
ments is an indiscernible set.

40



Exercise 18. With T = DLO, show that there are no non-constant indis-
cernible sets. That is, if I = (ai)i∈ω in Ux is an indiscernible set (where x is an
arbitrary finite context), then I is constant.

Exercise 19. In the random graph, find:

(a) A non-constant indiscernible set.

(b) An indiscernible sequence which is not an indiscernible set.

Definition 4.13. Let (I,≤) be an infinite linear order, let I = (ai)i∈I be an
I-indexed sequence from Ux (not necessarily indiscernible), and let B be a set.
The Ehrenfeucht–Mostowski type of I over B is a set of LB-formulas in
contexts x1, . . . , xn, where n ∈ ω and each xi is a tuple of length |x|:

EM(I/B) = {φ(x1, . . . , xn) | for all i1 < · · · < in ∈ I, |= φ(ai1 , . . . , ain)}.

A sequence J = (a′i)j∈J from Ux, indexed by a linear order (J,≤), satisfies
EM(I/B) if for all φ(x1, . . . , xn) ∈ EM(I/B), we have |= φ(a′j1 , . . . , a

′
jn

) for all
j1 < · · · < jn ∈ J . We also say that J is locally based on I over B.

The sequence I is indiscernible over B if and only if EM(I/B) is complete
in the sense that for any LB-formula φ(x1, . . . , xn), either φ ∈ EM(I/B) or
¬φ ∈ EM(I/B).

Using Ramsey’s Theorem, it is always possible to take a sequence in a model
of T and find an indiscernible sequence locally based on it.

Lemma 4.14 (“Standard Lemma”). Let I = (ai)i∈ω be a sequence from Ux,
and let B be a set. Then there is a B-indiscernible sequence J = (cj)j∈ω
satisfying EM(I/B).

Proof. Consider the partial type q (in context (yj)j∈ω, where each yj is a tuple
of length |x|) consisting of formulas:

(a) φ(yj1 , . . . , yjn), where j1 < · · · < jn in ω and φ(x1, . . . , xn) ∈ EM(I/B).

(b) φ(yj1 , . . . , yjn) ↔ φ(yj′1 , . . . , yj′n), where j1 < · · · < jn and j′1 < · · · < j′n in
ω and φ(x1, . . . , xn) is an LB-formula.

It suffices to show that q is consistent, since the formulas of type (a) ensure that
J satisfies EM(I/B) and the formulas of type (b) ensure that J is indiscernible
over B.

For any finite set of LB-formulas ∆, let q∆ be the same partial type, but with
the formulas of type (b) restricted to those LB-formulas appearing in ∆. A finite
subset of q is contained in q∆ for some finite set ∆, so by compactness it suffices
to show that q∆ is consistent. Further, by adding dummy variables, we may
assume that each formula in ∆ has the same context x1, . . . , xn, where each xi is
a tuple of length |x|. Indeed, if ψ(x1, . . . , xm) is an LB-formula with m < n, let
ψ′(x1, . . . , xn) be the same formula with dummy variables xm+1, . . . , xn added.
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Now for any j1 < · · · < jm and j′1 < · · · < j′m in ω, we can extend both sequences
to j1 < · · · < jn and j′1 < · · · < j′n in ω, and (b) for ψ′ implies

ψ(yj1 , . . . , yjm) ↔ ψ′(yj1 , . . . , yjn) ↔ ψ′(yj′1 , . . . , yj′n) ↔ ψ(yj′1 , . . . , yj′m).

Define a coloring c : [ω]n → P(∆) by

c({i1, . . . , in}) = {φ(x1, . . . , xn) ∈ ∆ ||= φ(ai1 , . . . , ain)},

where we always enumerate {i1, . . . , in} so that i1 < · · · < in.
By Ramsey’s Theorem, there is an infinite subset H ⊆ ω which is homo-

geneous for c. Enumerate H in increasing order as (aij )j∈ω. This sequence
satisfies q∆, which completes the proof.

Lemma 4.15 (Stretching indiscernibles). Let I = (ai)i∈I be an infinite B-
indiscernible sequence in Ux. For any linear order (J,≤), there is a J-indexed
B-indiscernible sequence J = (a′j)j∈J satisfying EM(I/B).

Proof. Consider the partial type:

q = {φ(yj1 , . . . , yjn) | φ(x1, . . . , xn) ∈ EM(I/B), j1 < · · · < jn ∈ J}.

A finite subset of q mentions only finitely many variables yj1 , . . . , yjm . Assuming
j1 < · · · < jm in J , this finite subset is satisfied by any ai1 , . . . , aim in I with
i1 < · · · < im. By compactness, q is consistent. Since EM(I/B) is complete,
any realization of q is B-indiscernible.

Given a formula φ(x1, . . . , xn) and a permutation σ ∈ Sn, write φσ for the
formula obtained from φ by substituting xσ(i) for xi everywhere for all 1 ≤ i ≤ n.
That is, |= φσ(a1, . . . , an) if and only if |= φ(aσ(1), . . . , aσ(n)).

We say EM(I/B) is symmetric if whenever φ(x1, . . . , xn) ∈ EM(I/B) and
σ ∈ Sn is a permutation, also φσ ∈ EM(I/B).

Lemma 4.16. Let I = (ai)i∈I be a B-indiscernible sequence. I is a B-
indiscernible set if and only if EM(I/B) is symmetric.

Proof. Suppose I is a B-indiscernible set. Let φ(x1, . . . , xn) ∈ EM(I/B) and
σ ∈ Sn. To show φσ ∈ EM(I/B), let i1 < · · · < in. Then |= φ(ai1 , . . . , ain), and
since I is aB-indiscernible set, also |= φ(aiσ(1)

, . . . , aiσ(n)
), so |= φσ(ai1 , . . . , ain),

as desired.
Now suppose EM(I/B) is symmetric. Let φ(x1, . . . , xn) be an LB-formula,

and let i1, . . . , in and j1, . . . , jn be sequences of distinct elements in I. There
are some permutations µ and ν with iµ(1) < · · · < iµ(n) and jν(1) < · · · < jν(n).

Now if |= φ(ai1 , . . . , ain), then |= φµ
−1

(aiµ(1)
, . . . , aiµ(n)

), so φµ
−1 ∈ EM(I/B).

By symmetry, φν
−1

= (φµ
−1

)ν
−1◦µ ∈ EM(I/B). So |= φν

−1

(ajν(1)
, . . . , ajν(n)

),
and |= φ(aj1 , . . . , ajn).
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The “absence of order” characterizing stable theories can be detected at the
level of indiscernible sequences. We need one more easy lemma: our original
definition of the order property applied only to formulas without parameters,
but formulas with parameters can also witness the order property.

Lemma 4.17. Suppose φ(x; y) is a formula with parameters from C with the
order property. Then some formula ψ(x; y, z) with no parameters has the order
property.

Proof. Suppose (ai)i∈ω and (bj)j∈ω witness the order property for φ(x; y). Make
the parameters from C explicit by writing φ(x; y) = ψ(x; y, c). Then (ai)i∈ω
and (bjc)j∈ω witness the order property for ψ(x; y, z): |= ψ(ai; bj , c) if and only
if φ(ai; bj) if and only if i ≤ j.

Theorem 4.18. T is stable if and only if every indiscernible sequence is an
indiscernible set.

Proof. First, assume T is not stable. Then some formula φ(x; y) has the order
property, witnessed by (ai)i∈ω in Ux and (bj)j∈ω in Uy. Let I = (anbn)n∈ω.
Consider the formula θ(x1, y1, x2, y2) : φ(x1; y2). Letting τ be the transposition
swapping 1 and 2, the formula θτ is φ(x2; y1). For all i < j, |= φ(ai; bj), but
|= ¬φ(aj ; bi), so θ ∈ EM(I) but ¬θτ ∈ EM(I).

By the Standard Lemma, there is an indiscernible sequence J realizing
EM(I). Then EM(J ) is not symmetric, so by Lemma 4.16, J is not an in-
discernible set.

Conversely, suppose there is some B-indiscernible sequence I = (ai)i∈I in
Ux which is not a B-indiscernible set. By Lemma 4.16, there is some formula
φ(x1, . . . , xn) ∈ EM(I/B) and some σ ∈ Sn such that φσ /∈ EM(I/B). By
stretching, we may assume that I is indexed by ω + ω.

Write τk for the transposition in Sn which swaps k and k + 1 and fixes all
other elements. The set {τk | 1 ≤ k < n} is a generating set for Sn. Writing σ
as a product of these transpositions, we can transform φ to φσ in a sequence of
steps. It follows that there is a formula ψ ∈ EM(I/B) and a transposition τk
such that ψτk /∈ EM(I/B).

Thus, for any sequence i1 < · · · < ik < ik+1 < · · · < in from ω + ω, we have

|= ψ(ai1 , . . . , aik , aik+1
, . . . , ain) and |= ¬ψ(ai1 , . . . , aik+1

, ak, . . . , ain).

Let θ(x; y) be the formula ψ(a1, . . . , ak−1, x, y, aω+k+2, . . . , aω+n). This is a
formula with parameters from Ba1 . . . ak−1aω+k+2, . . . , aω+n. The sequences
(ak+i)i∈ω and (ak+j)j∈ω witness the order property, since |= θ(ak+i; ak+j) if
and only if i ≤ j or i < j: which case we are in depends on whether

ψ(x1, . . . , xk−1, xk, xk, xk+1, . . . , xn−1) ∈ EM(I/B).

In either case, θ(x; y) has the order property, by Proposition 4.6. By Lemma 4.17,
some formula without parameters has the order property, so T is unstable.

Exercise 20. Show that a formula φ(x; y) is stable if and only if there exists
k ∈ ω such that for any indiscernible sequence (ai)i∈I in Ux and any b ∈ Uy, we
have |{ai | i ∈ I and |= φ(ai; b)}| ≤ k or |{ai | i ∈ I and |= ¬φ(ai; b)}| ≤ k.
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4.3 Ehrenfeucht–Mostowski models

In this section, we introduce a new method for building models of T , using indis-
cernible sequences. The resulting models, called Ehrenfeucht–Mostowski mod-
els, have two classic applications. The original application, due to Ehrenfeucht
and Mostowski, was to build models with the maximal number of automor-
phisms. The second, due to Morley, was to build uncountable models realizing
few types over countable sets. The latter result will lead to our first theorem
on uncountably categorical theories: if T is κ-categorical for some uncountable
κ, then T is ℵ0-stable.

Definition 4.19. Let φ(x; y1, . . . , yn) be a partitioned formula, where each
variable x and yi is a singleton. A Skolem function for φ is an n-ary function
f such that

T |= ∀y1, . . . , yn ((∃xφ(x; y1, . . . , yn)) → φ(f(y1, . . . , yn); y1, . . . , yn)).

We include the case n = 0, in which case f is a 0-ary function symbol, i.e., a
constant symbol.

We define the language LSk to be L together with a new n-ary function
symbol fφ for each L-formula φ(x; y1, . . . , yn). The Skolemization of T is the
LSk-theory TSk obtained by adding to T the sentences asserting that each fφ is
a Skolem function for φ. Note that TSk is not a complete theory.

The key property of TSk is the following: if M |= TSk and A ⊆ M , let
N = ⟨A⟩Sk, the substructure of M generated by A. Then by the Tarski–
Vaught test, N |L ⪯ M |L. In particular, N |= T . Similarly, if M,N |= TSk and
h : N → M is a homomorphism of LSk-structures, then h : N |L → M |L is an
elementary embedding of L-structures.

Exercise 21. If necessary, review the Tarski–Vaught test and prove the asser-
tions in the previous paragraph.

We can expand U to a model USk |= TSk, which we call a Skolemization
of U : for each formula φ(x; y1, . . . , yn) and each tuple (b1, . . . , bn) ∈ Un, de-
fine fφ(b1, . . . , bn) to be an arbitrary element of φ(U ; b1, . . . , bn), if this set is
nonempty. Otherwise, define fφ(b1, . . . , bn) to be an arbitrary element of U .

Fix a Skolemization USk of U . Let (ai)i∈ω be an indiscernible sequence in
U1
Sk such that ai ̸= aj when i ̸= j (which exists by the Standard Lemma). Let

Σ = EM((ai)i∈ω).
Now for any linear order (I,≤), by stretching there is an indiscernible se-

quence I = (ai)i∈I indexed by I realizing Σ. We define the EM-model with
spine I and EM-type Σ by MΣ

I = ⟨I⟩Sk|L ⪯ U . Note that for any element
b ∈ MΣ

I , there is some LSk-term t(x1, . . . , xn) and some ai1 , . . . , ain in I with
i1 < · · · < in (without loss of generality) such that b = tUSk(ai1 , . . . , ain). It
follows that when I is infinite, |MΣ

I | = |I|.

Exercise 22. Let (I,≤) and (J,≤) be linear orders, with associated EM-models
MΣ
I and MΣ

J . Let e : (I,≤) → (J,≤) be an embedding of linear orders. Show
that e induces an elementary embedding ê : MΣ

I →MΣ
J .
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Verify that the assignment (I,≤) 7→ MΣ
I and e 7→ ê defines a functor from

the category of linear orders and order embeddings to the category of models
of T and elementary embeddings. (This functor is not very “canonical”: it
depends on the choice of Skolemization USk and on the EM-type Σ.)

For any model M |= T , if |M | = κ, then the number of automorphisms of
M is at most κκ = 2κ. Using EM-models, we can show that this upper bound
is always attained.

Exercise 23. Let κ be an infinite cardinal. Show that there is a model M |= T
with |M | = κ and |Aut(M)| = 2κ.

As we have seen, it is easy to realize types, and hence to build κ-saturated
models which realize lots of types. It is much harder to realize very few types!
EM-models are one way to do this.

Theorem 4.20. Let (I,≤) be a well-ordered set, and let MΣ
I be an EM-model

with spine I. Then for any countable set B ⊆ MΣ
I , at most countably many

types in S1(B) are realized in MΣ
I .

Proof. Let B ⊆MΣ
I be a countable set. Let I = (ai)i∈I be the LSk-indiscernible

sequence such that MΣ
I = ⟨I⟩Sk|L, and write M = ⟨I⟩Sk (so M is an LSk-

structure and MΣ
I = M |L). We will show the that at most countably many

LSk-types from SLSk
1 (B) are realized in M . This suffices, since if two elements

have the same LSk-type over B, they have the same L-type over B.
For each b ∈ B, pick some finite sequence ai1 , . . . , ain from I such that

b = t(ai1 , . . . , ain) for some LSk-term t(x1, . . . , xn). Let J ⊆ I be the set of
all indices of elements obtained in this way, and let J = (aj)j∈J . Then J is
countable and B ⊆ ⟨J ⟩Sk. It suffices to show that at most countably many LSk-
types over J are realized in M , since if two elements have the same LSk-type
over J , they have the same LSk-type over B.

Now for each element c ∈ M , pick some LSk-term t(x1, . . . , xn) and some
ai1 , . . . , ain in I with i1 < · · · < in, such that c = t(ai1 , . . . , ain). We define the
signature of c to consist of:

(1) The LSk-term t(x1, . . . , xn).

(2) For each 1 ≤ k ≤ n, one of the following pieces of data:

(a) If ik ∈ J : the string “= ik”.

(b) If ik is greater than every element of J : the symbol “∞”.

(c) If ik /∈ J but is bounded above by an element of j: the string “< j”,
where j ∈ J is least such that ik < j (here we use the well-ordering).

Since LSk is a countable language and J is countable, there are only count-
ably many possible signatures. Thus it suffices to show that if c and c′ have the
same signature, then tpLSk

(c/J ) = tpLSk
(c′/J ).

Let φ(z, aj1 , . . . , ajm) ∈ tpLSk
(c/J ), where j1 < · · · < jm ∈ J . Since c and

c′ have the same signature, we have c = t(ai1 , . . . , ain) and c′ = t(ai′1 , . . . , ai′n)
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for a fixed LSk-term t. Additionally, for each 1 ≤ k ≤ n and each 1 ≤ ℓ ≤ m,
ik ≤ jℓ if and only if i′k ≤ jℓ, and ik ≥ jℓ if and only if i′k ≥ jℓ.

Since φ(z, aj1 , . . . , ajm) ∈ tpLSk
(c/J ),

|= φ(t(ai1 , . . . , ain), aj1 , . . . , ajm).

By indiscernibility of I,

|= φ(t(ai′1 , . . . , ai′n), aj1 , . . . , ajm),

and hence φ(z, aj1 , . . . , ajm) ∈ tpLSk
(c′/J ). This completes the proof.

Corollary 4.21. Let κ be an uncountable cardinal. If T is κ-categorical, then
T is ℵ0-stable.

Proof. Suppose for contradiction that T is not ℵ0-stable. Then there is some
countable set B with |S1(B)| > ℵ0. Pick some set X ⊆ S1(B) with |X| = ℵ1.
By Lemma 2.12, there is a model M containing B and realizing all the types in
X, and furthermore |M | = ℵ1. Since ℵ1 ≤ κ, M has an elementary extension
M ⪯ M ′ with |M ′| = κ. Then B ⊆ M ′ and M ′ realizes uncountably many
types in S1(B).

Let MΣ
κ be an EM-model with spine κ. Since |MΣ

κ | = κ and T is κ-
categorical, there is an isomorphism i : M ′ ∼= MΣ

κ . Then i(B) is a countable
subset of MΣ

κ , and MΣ
κ realizes uncountably many types in S1(i(B)). This

contradicts Theorem 4.20.
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5 Totally transcendental theories

5.1 ℵ0-stability

Recall that T is stable if and only if there is no binary tree of φ-formulas (with
parameters) for any partitioned formula φ(x; y). You may recall from a previous
course in model theory that T is small (Definition 2.19) if and only if there is
no binary tree of formulas without parameters.

We now consider a common strengthening of these notions: a totally tran-
scendental theory is one in which there is no binary tree of formulas with pa-
rameters.

Definition 5.1. Let φ and ψ be formulas with parameters in the same variable
context x.

• We say φ implies ψ if |= ∀x (φ→ ψ). Equivalently, φ(U) ⊆ ψ(U).

• We say φ and ψ are contradictory if |= ∀x¬(φ ∧ ψ). Equivalently,
φ(U) ∩ ψ(U) = ∅.

Definition 5.2. T is totally transcendental4 if there is no binary tree of
formulas with parameters {φg(x) | g ∈ 2<ω} in a common finite variable context
x, such that for all g ∈ 2<ω:

• φg is consistent.

• φg0 and φg1 each imply φg.

• φg0 and φg1 are contradictory.

One way to think about the relationship between totally transcendental and
stable theories is that the local behavior of stable formulas is true globally for
totally transcendental theories. And just as a formula is stable if and only if is
κ-stable for all infinite κ, we have the following theorem:

Theorem 5.3. The following are equivalent:

(1) T is totally transcendental.

(2) T is ℵ0-stable.

(3) T is κ-stable for all infinite cardinals κ.

4The terminology is due to Morley, who defined a notion of rank he called “transcendental
rank”. As we will see in Theorem 5.16 below, a theory is totally transcendental if and only if
every formula has an ordinal valued transcendental rank. The transcendental rank was later
renamed “Morley rank”, but the name “totally transcendental” stuck. In Theorem 5.3 below,
we will see that T is totally transcendental if and only if it is ℵ0-stable. For this reason, totally
transcendental theories are often called “ω-stable theories” (it is traditional to write ω-stable
instead of ℵ0-stable). But this equivalence only holds when the language is countable, and
totally transcendental is the more robust notion. So I will stick to this terminology, even
though we always work with a countable language in this class.
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Proof. (3)⇒(2): Trivial.
(2)⇒(1): Suppose T is not totally transcendental. Let {φg(x) | g ∈ 2<ω}

be a binary tree of formulas, and let B be the set of all parameters appearing
in these formulas. Then B is countable. For each f ∈ 2ω, consider the partial
type pf = {φf |n(x) | n ∈ ω}. I claim that pf is a consistent partial type over B.
By compactness, we only need to show that {φf |n(x) | n ≤ N} is consistent for
N ∈ ω. But φf |N (x) is consistent by hypothesis, and φf |N (x) implies φf |n(x)
for all n ≤ N , so pf is consistent.

For each f ∈ 2ω, let qf ∈ Sx(B) be a complete type extending pf . Now
if f ̸= f ′ in 2ω, let n be least such that f(n) ̸= f ′(n). Then qf contains
φf |n+1

(x) and qf ′ contains φf ′|n+1
(x) and these two formulas are contradictory,

so qf ̸= qf ′ . Thus |Sx(B)| = 2ℵ0 , and T is not ℵ0-stable.
(1)⇒(3): Suppose there is some infinite cardinal κ such that T is not κ-

stable. Let B be a set with |B| ≤ κ and |S1(B)| > κ. For a formula φ ∈ F1(B),
write [φ] = {p ∈ S1(B) | φ ∈ p}. We say φ is wide if |[φ]| > κ. Otherwise,
we say φ is thin. We say a type is thin if it contains a thin formula. Write
H ⊆ S1(B) for the set of thin types. Then H =

⋃
φ thin[φ], so |H| ≤ κ.

I claim that if φ is wide, then there is a formula ψ ∈ F1(B) such that φ ∧ ψ
and φ ∧ ¬ψ are both wide. Indeed, since |[φ]| > κ, |[φ] \H| > κ > 1. Pick two
distinct types p, q ∈ [φ]\H. Since p ̸= q, there is a formula ψ ∈ F1(B) such that
ψ ∈ p and ¬ψ ∈ q. Since p and q are not thin, φ∧ψ ∈ p is wide and φ∧¬ψ ∈ q
is wide.

Now we build a binary tree of wide formulas by induction. Let φ∅ be ⊤,
which is wide since [⊤] = S1(B). Given a wide formula φg with g ∈ 2<ω, let ψ
be a wide formula with that φg∧ψ and φg∧¬ψ are both wide. Set φg0 = φg∧ψ,
and set φg1 = φg ∧ ¬ψ. This completes the proof.

We could have used the proof strategy of (1)⇒(3) in the proof of the Stable
Formula Theorem to prove that a formula without the binary tree is κ-stable for
all infinite κ. However, we preferred to go through definability of types, because
of the independent importance of this notion.

Also, in the Stable Formula Theorem, we were able to prove that if φ is
κ-stable for some infinite cardinal κ, then φ does not have the binary tree
property. Here we are only able to prove that if T is ℵ0-stable, then T is totally
transcendental. This is because a binary tree of formulas cannot be blown up to
arbitrary ordinal height by compactness, unlike an instance of the binary tree
property for a single formula.

5.2 Prime and atomic models

Recall that for any set A, we topologize the type space Sx(A) by taking as a
basis sets of the form [φ] = {p ∈ Sx(A) | φ ∈ p} for φ ∈ Fx(A). Since [φ] is
the complement of [¬φ] each basic open set is in fact clopen. In this topology,
Sx(A) is a compact Hausdorff space.

Definition 5.4. A type p ∈ Sx(A) is isolated if it is an isolated point in the
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space Sx(A). Equivalently, if there is a formula φ ∈ Fx(A) such that for all
ψ ∈ p, |= ∀x (φ→ ψ), so that [φ] = {p}.

We say isolated types are dense over A if for all finite contexts x, the
set of isolated types is a dense set in the space Sx(A). Equivalently, for every
formula φ ∈ Fx(A), there is some isolated type containing φ.

Exercise 24. Let a and b be finite tuples. Show that tp(ab/A) is isolated if
and only if tp(a/A) is isolated and tp(b/Aa) is isolated.

Theorem 5.5. Suppose T is totally transcendental. Then for every set A,
isolated types are dense over A.

Proof. Suppose there is a set A and a context x such that isolated types are not
dense in Sx(A). Then there is a formula φ(x) ∈ Fx(A) such that no type in [φ]
is isolated.

We show that T is not totally transcendental by building a binary tree of
formulas over A by induction. Let φ∅ be φ. Given φg with g ∈ 2<ω, any type
containing φg contains φ, and hence is not isolated. It follows that [φg] contains
at least two distinct types p ̸= q (otherwise φg would be inconsistent or would
isolate the unique type in [φg]). So there is some formula ψ ∈ Fx(A) such that
ψ ∈ p and ¬ψ ∈ q. Let φg0 be φg ∧ ψ, and let φg1 be φg ∧ ¬ψ.

Note that the same argument shows that if T is small, then isolated types
are dense over ∅. A classical consequence for the model theory of countable
structures is the existence of prime and atomic models (over ∅).

Definition 5.6. Let M be a model and A ⊆ M . We say M is prime over
A if every partial elementary map f : A → N |= T extends to an elementary
embedding M → N . We say M |= T is a prime model if M is prime over ∅.

Note that in the definition of prime over A, the elementary embedding M →
N is not required to be unique.

Definition 5.7. Let M be a model and A ⊆M . We say M is atomic over A
if every type over A realized in M is isolated. We say a model M is atomic if
M is atomic over ∅.

Observe that M is prime over A if and only if M is a prime model of TA,
and M is atomic over A if and only if M is an atomic model of TA.

You may recall the following fact from a previous course in model theory:

Fact 5.8. A countable model of T is prime if and only if it is atomic. Moreover,
such a model exists if and only if isolated types are dense over ∅, in which case
it is unique up to isomorphism.

By way of motivation for what comes next, let me sketch the proof of the
equivalence between prime and atomic models.

In one direction, if M is not atomic, there is some tuple from M which real-
izes a non-isolated type p. By the omitting types theorem, there is a countable
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model N |= T which does not realize p. But then there can be no elementary
embedding M → N , so M is not prime.

In the other direction, if M is countable and atomic, we can enumerate M
as (an)n∈ω, and tp(an/a0 . . . an−1) is isolated for all n (by Exercise 24). For
any other N |= T , we can define an elementary embedding M → N one step at
a time, using the fact that isolated types are realized in every model. So M is
prime.

The uniqueness of the countable prime/atomic model can then be established
similarly, using a back-and-forth argument.

What about prime and atomic models over arbitrary sets A? When A is
countable, we can just apply Fact 5.8 to the theory TA. But when A is un-
countable, two crucial points in the arguments above break down. First, the
omitting types theorem only works when the language is countable. Second, if
M is atomic of cardinality κ = |A|, we can enumerate M = (aα)α<κ, but there
is no guarantee that tp(aα/(aβ)β<α) is isolated when α is infinite.

The solution to this issue is to work with models which do have a nice
enumeration.

Definition 5.9. A construction sequence over a set A is a sequence (bβ)β<α
indexed by an ordinal α such that for all γ < α, tp(bγ/A(bβ)β<γ) is isolated.

Let M be a model and A ⊆M . We say M is constructible over A if there
is a construction sequence (mβ)β<α which enumerates M .

Theorem 5.10. If a model M is constructible over A, then it is prime over A
and atomic over A.

Proof. Suppose M is enumerated by the construction sequence (mβ)β<α.
To show M is prime, let f : A → N |= T be a partial elementary map. We

define a sequence of partial elementary maps (fβ)β≤α by recursion, such that
dom(fβ) = A ∪ {mγ | γ < β}.

Let f0 = f . When γ is a limit ordinal, let fγ =
⋃
β<γ fβ . Given fβ ,

consider p = tp(mβ/A(mγ)γ<β). By hypothesis, p is isolated by a formula
φ. Then (fβ)∗p is isolated by (fβ)∗φ. Since M |= ∃xφ and fβ is partial
elementary, N |= ∃x (fβ)∗φ, so we can pick some nβ ∈ N realizing (fβ)∗p. Let
fβ+1 = fβ ∪ {(mβ , nβ)}.

To show M is atomic, we argue by induction on β that for any tuple
mβ1

, . . . ,mβn
, with max(β1, . . . , βn) = β, tp(mβ1

, . . . ,mβn
/A) is isolated.

First note that if the β1, . . . , βn are not distinct, say if βn = βn−1, then
tp(mβn/Amβ1 . . .mβn−1) is isolated (by x = βn−1), so by Exercise 24, it suffices
to show that tp(mβ1

. . .mβn−1
/A) is isolated. Thus, without loss of generality,

we may assume β1 < · · · < βn = β.
Now by hypothesis, tp(mβ/A(mγ)γ<β) is isolated, say by φ(x,mγ1 , . . . ,mγk).

Consider the tuple m∗ = (mβ1 , . . . ,mβn−1 ,mγ1 , . . . ,mγk). We have

max(β1, . . . , βn−1, γ1, . . . , γk) < β,

so by induction tp(m∗/A) is isolated, and φ isolates tp(mβ/Am
∗), so by Exer-

cise 24, tp(m∗mβ/A) is isolated. But our original tuple is a subtuple of m∗mβ ,
so its type over A is isolated, again by Exercise 24.
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Theorem 5.11. Suppose that for every set B, isolated types are dense over B.
Then for any set A, T has a constructible model over A.

Proof. We build a construction sequence by transfinite recursion. First enumer-
ate A as (bβ)β<α. Suppose for γ ≥ α we have a construction sequence (bβ)β<γ .
Let B = {bβ | β < γ}. If B is an elementary substructure of U , then B is a
constructible model over A, and we are done.

Otherwise, by the contrapositive of the Tarski–Vaught test, there is some
formula φ(x) over B such that U |= ∃xφ(x), but there is no realization of φ in
B. Since isolated types are dense over B, there is a type p ∈ Sx(B) containing
φ and isolated by a formula ψ ∈ Fx(B). Since |= ∃xψ(x), we can define bγ to
be some element of U satisfying ψ, so that tp(bγ/(bβ)β<γ) = p is isolated.

This construction eventually stops with a constructible model over A.

Corollary 5.12. Suppose T is totally transcendental. For every set B, T has
prime models over B, and every prime model over B is atomic over B.

Proof. By Theorem 5.5, isolated types are dense over B. By Theorem 5.11, T
has a constructible model M over B. By Theorem 5.10, M is prime and atomic
over B.

Now suppose N |= T is prime over B. Then the inclusion B → M extends
to an elementary embedding N →M . Then every type in Sx(B) realized in N
is realized in M . Since M is atomic over B, N is atomic over B.

In fact, more is true: constructible models over B are unique up to isomor-
phism, and if T is totally transcendental, then every prime model over B is
constructible over B. So totally transcendental theories admit canonical prime
models over arbitrary sets. These results are more difficult. Proofs can be found
in Marker or Tent and Ziegler.

Exercise 25. Consider the theory TE of an equivalence relation with infinitely
many infinite classes.

(1) Let A be an uncountable set of elements in a single equivalence class. De-
scribe a constructible model over A, and define a construction sequence
enumerating it.

(2) Let A be an uncountable set elements, no two of which are equivalent.
Describe a constructible model over A, and define a construction sequence
enumerating it.

Not every theory with constructible models over all sets is totally transcen-
dental, or even stable, as the following example shows.

Exercise 26. Let T = DLO. Show that isolated types are dense over all sets
(and hence T has constructible models over all sets). It may help to first prove
that it suffices to show that isolated types are dense in S1(A) for all sets A.
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5.3 Morley rank

Just as in the case of a stable formula, in totally transcendental theories it will
be useful to define a rank which measures how much a definable set can be “cut
up” into smaller definable sets. We could define a global 2-rank in this case,
analogously to the local 2-rank. But it turns out to be more useful if we “cut
up” our definable sets into infinitely many pieces. In particular, this will allow
us to prove that the rank of a union of two definable sets is the maximum of
their ranks, which is a desirable property for notion of “dimension”.

The resulting notion of rank, the Morley rank, takes values in Ord∪ {±∞}.
We need to consider infinite ordinal values here because (unlike the case of the
local 2-rank) we cannot use compactness to blow up trees of arbitrary finite
height to trees of arbitrary ordinal height.

Definition 5.13. For any formula with parameters φ(x), we define the Morley
rank of φ, MR(φ), recursively as follows:

(1) MR(φ) ≥ 0 if and only if φ is satisfiable.

(2) MR(φ) ≥ α+ 1 if and only if there is a family of formulas with parameters
(ψi(x))i∈ω such that:

• MR(ψi) ≥ α for all i.

• ψi implies φ for all i.

• ψi and ψj are contradictory for all i ̸= j.

(3) MR(φ) ≥ γ when γ is a limit ordinal if and only if MR(φ) ≥ β for all β < γ.

If φ is not satisfiable, we set MR(φ) = −∞. If MR(φ) ≥ α for all ordinals α, we
set MR(φ) = ∞. Otherwise, we set MR(φ) to be the maximal ordinal α such
that MR ≥ α.

Exercise 27. Suppose φ and ψ are formulas with parameters in the same
context x. If φ implies ψ, show that MR(φ) ≤ MR(ψ). (Hint: Show by
induction on α that if MR(φ) ≥ α, then MR(ψ) ≥ α.) Observe that it follows
that equivalent formulas have equal Morley rank.

As a consequence of Exercise 27, the Morley rank is a property of the defin-
able set D, not the particular formula with parameters defining D. We have:

• MR(D) = 0 if and only if D is finite.

• MR(D) = 1 if and only if D is infinite, but there is no way to cut up D
into infinitely many disjoint infinite definable sets.

• MR(D) = 2 if and only if D can be cut up into infinitely many disjoint
infinite definable sets, but not in such a way that each of these sets can
be cut up into infinitely many disjoint infinite definable sets.
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• Note that MR(D) ≥ ω does not mean that D can be cut up into a count-
ably branching tree of definable sets of countable height. Rather, it means
that for any finite n, D can be cut up into a countably branching tree of
definable sets of height n (but different n may require different trees).

Exercise 28. Let T be the theory of non-empty acyclic graphs such that every
vertex has infinitely many neighbors (i.e., infinitely branching forests). Show
that T is complete and totally transcendental, and when x is a single variable,
MR(x = x) = ω.

Example 5.14. With T = DLO, for any a < b, we have MR(a < x < b) = ∞.
We prove by induction that MR(a < x < b) ≥ α for all ordinals α. Since < is
dense, a < x < b is satisfiable, so MR(a < x < b) ≥ 0. When γ is a limit ordinal,
we have MR(a < x < b) ≥ β for all β < γ by induction, so MR(a < x < b) ≥ γ.
Finally, to show MR(a < x < b) ≥ α+ 1, pick a = a0 < b0 < a1 < b1 < · · · < b.
By induction, MR(ai < x < bi) ≥ α for all i ∈ ω, and these formulas imply
a < x < b and are pairwise contradictory.

Exercise 29. If φ(x; b) is a formula with parameters b ∈ Uy, show that MR(φ)
only depends on the formula φ(x; y) and the type tp(b) ∈ Sy(∅). That is, if
tp(b) = tp(b′), then MR(φ(x; b)) = MR(φ(x; b′)).

Lemma 5.15. There is an ordinal γT such that for every formula with param-
eters θ, if MR(θ) ≥ γT , then MR(θ) = ∞.

Proof. Since there are only countably many formulas φ(x; y) and at most 2ℵ0 -
many types in Sy(∅), by Exercise 29 only 2ℵ0 -many ordinals are in the range
of the function MR. Let γT be the least ordinal greater than the every ordinal
in the range.

With a little more work, one can show that the ordinal γT is always ≤ ℵ1

(in a countable language). So the Morley rank of any formula is a countable
ordinal. But we will not need this fact.

Theorem 5.16. T is totally transcendental if and only if no formula with pa-
rameters has Morley rank ∞.

Proof. First, assume T is not totally transcendental. Let {φg(x) | g ∈ 2<ω}
be a binary tree of formulas. I claim, by induction on α, that for all g ∈ 2<ω,
MR(φg) ≥ α. In particular, MR(φ∅) = ∞.

In the base case, each φg is satisfiable by assumption, so MR(φg) ≥ 0.
When γ is a limit ordinal, assume MR(φg) ≥ β for all g ∈ 2<ω and all β < γ.

Then MR(φg) ≥ γ for all g ∈ 2<ω by definition.
For the successor step, assume MR(φg) ≥ α for all g ∈ 2<ω. Fix some

h ∈ 2<ω. Define ψ0 = φh1, ψ1 = φh01, ψ2 = φh001, and in general ψi = φh0i1.
For all i, ψi implies φh and MR(ψi) ≥ α by the inductive hypothesis. Also,
when i < j, ψj = φh0j1 implies φh0i0, so ψi and ψj are contradictory. Thus
MR(φh) ≥ α+ 1.
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Conversely, assume φ is a formula with parameters with MR(φ) = ∞. We
build a binary tree of formulas with Morley rank ∞ by induction. Let φ∅ be φ.

Suppose we are given a formula φg of Morley rank ∞ with g ∈ 2<ω. By
Lemma 5.15, there is an ordinal γT such that if MR(θ) ≥ γT , then MR(θ) = ∞.
Since MR(φg) ≥ γT +1, there is a family of formulas with parameters (ψi(x))i∈ω
such that:

• MR(ψi) ≥ γT for all i.

• ψi implies φg for all i.

• ψi and ψj are contradictory for all i ̸= j.

Let φg0 = ψ0, and let φg1 = ψ1. Then φg0 and φg1 imply φg and are
contradictory. We have MR(ψ0) ≥ γT and MR(ψ1) ≥ γT , so MR(φg0) =
MR(φg1) = ∞, and we can continue the induction.

Lemma 5.17. Let φ and ψ be formulas with parameters in the same context
x. Then:

MR(φ ∨ ψ) = max(MR(φ),MR(ψ)).

Proof. Since φ implies φ ∨ ψ, MR(φ) ≤ MR(φ ∨ ψ) by Exercise 27. The same
is true for ψ, so max(MR(φ),MR(ψ)) ≤ MR(φ ∨ ψ).

Conversely, it suffices to show by induction on α that for all formulas φ and
ψ, if MR(φ ∨ ψ) ≥ α, then max(MR(φ),MR(ψ)) ≥ α.

In the base case, if φ∨ψ is satisfiable, then φ is satisfiable or ψ is satisfiable.
If γ is a limit ordinal and MR(φ ∨ ψ) ≥ γ, then MR(φ ∨ ψ) ≥ β for all

β < γ. By induction, max(MR(φ),MR(ψ)) ≥ β for all β < γ. It follows that
max(MR(φ),MR(ψ)) ≥ γ.

If MR(φ ∨ ψ) ≥ α + 1, this is witnessed by a family of formulas (θi)i∈ω.
Since θi implies φ ∨ ψ, we have that θi is equivalent to θi ∧ (φ ∨ ψ), which is
equivalent to (θi ∧ φ) ∨ (θi ∧ ψ). Now for all i, MR(θi) ≥ α, so by induction,
max(MR(θi ∧ φ),MR(θi ∧ ψ)) ≥ α. Then there is an infinite set H ⊆ ω such
that for all i ∈ H, MR(θi ∧ φ) ≥ α, or for all i ∈ H, MR(θi ∧ ψ) ≥ α. In the
first case, the formulas (θi ∧φ)i∈H witness MR(φ) ≥ α. In the second case, the
formulas (θi ∧ ψ)i∈H witness MR(ψ) ≥ α.

For any ordinal α, we say that formulas (with parameters) φ and ψ are
α-equivalent, written φ ∼α ψ if MR((φ ∧ ¬ψ) ∨ (¬φ ∧ ψ)) < α.

For example: φ ∼0 ψ if and only if φ(U) = ψ(U). φ ∼1 ψ if and only if
the symmetric difference of φ(U) and ψ(U) is finite. φ ∼2 ψ if and only if the
symmetric difference of φ(U) and ψ(U) has Morley rank ≤ 1, etc.

Exercise 30. Show that ∼α is an equivalence relation.

We say a formula (with parameters) φ with is irreducible if for all formulas
ψ, either MR(φ ∧ ψ) < MR(φ) or MR(φ ∧ ¬ψ) < MR(φ).

A family of formulas (with parameters) ψ1, . . . , ψn are irreducible com-
ponents of φ if they are pairwise contradictory, φ is equivalent to

∨n
i=1 ψi, and

for each i, ψi is irreducible with MR(ψi) = MR(φ).
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Theorem 5.18. Suppose MR(φ) = α is an ordinal. Then φ has a decomposi-
tion into irreducible components. Moreover, this decomposition is unique up to
α-equivalence of the components.

Proof. For contradiction, suppose φ does not have a decomposition into irre-
ducible components. In particular, φ is not itself irreducible, so there is some
formula θ such that MR(φ ∧ θ) = α and MR(φ ∧ ¬θ) = α. If both φ ∧ θ and
φ ∧ ¬θ had decompositions into irreducible components, then φ would as well.
Without loss of generality, φ1 = φ ∧ θ has no decomposition into irreducible
components. Set ψ0 = φ ∧ ¬θ.

Now repeat the argument with φ1, obtaining formulas φ2 and ψ1, each of
Morley rank α, such that φ2 has no decomposition into irreducible components.
In this way, we construct a family (ψn)n∈ω witnessing that MR(φ) ≥ α + 1,
contradiction.

For uniqueness, suppose ψ1, . . . , ψn and θ1, . . . , θm are both decompositions
of φ into irreducible components. For all i, ψi is equivalent to

∨m
j=1(ψi ∧ θj).

Since MR(ψi) = α, there is at least one j such that MR(ψi ∧ θj) = α, and since
ψi is irreducible, there is at most one such j. This shows n ≤ m.

Now since ψi is irreducible, MR(ψi ∧ ¬θj) < α, and since θj is irreducible,
MR(¬ψi ∧ θj) < α. By Lemma 5.17, ψi ∼α θj . By the symmetric argument,
n = m and each θj is α-equivalent to exactly one ψi.

Definition 5.19. Suppose φ is a formula whose Morley rank is an ordinal (i.e.,
not −∞ or ∞). The Morley degree of φ, MD(φ), is the number of irreducible
components of φ. Note that MD(φ) ∈ ω \ {0}.

Exercise 31. Suppose MR(φ) = α. Show that MD(φ) is the maximal d ∈ ω
such that there are formulas (with parameters) ψ1, . . . , ψd in the same variable
context as φ, such that:

• MR(ψi) ≥ α for all i.

• ψi implies φ for all i.

• ψi and ψj are contradictory for all i ̸= j.

Note that by definition of Morley rank, we cannot have an infinite family of
such formuls ψi. But the existence of a maximal d is not obvious.

Lemma 5.20. Let φ and ψ be formulas with parameters in the same context
x. Assume φ and ψ are contradictory, and both have ordinal Morley rank.

(1) If MR(φ) < MR(ψ), then MD(φ ∨ ψ) = MD(ψ).

(2) If MR(φ) = MR(ψ), then MD(φ ∨ ψ) = MD(φ) + MD(ψ).

Proof. Let θ1, . . . , θd be a decomposition of ψ into irreducible components. If
MR(φ) < MR(ψ), then θ′1 = θ1∨φ remains irreducible with Morley rank MR(ψ),
so θ′1, θ2, . . . , θd is a decomposition of φ ∨ ψ into irreducible components.

If MR(φ) = MR(ψ), let χ1, . . . , χd′ be a decomposition of φ into irreducible
components. Then θ1, . . . , θd, χ1, . . . , χd′ is a decomposition of φ ∨ ψ into irre-
ducible components.
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Finally, we would like to extend Morley rank and degree to complete types.

Definition 5.21. For a complete type p ∈ Sx(A), we define

MR(p) = min{MR(φ) | φ ∈ p}
MD(p) = min{MD(φ) | φ ∈ p and MR(φ) = MR(p)}.

If MR(φ) = ∞ for all φ ∈ p, we set MR(p) = ∞ and leave MD(p) undefined. For
a ∈ Ux, we write MR(a/A) and MD(a/A) for MR(tp(a/A)) and MD(tp(a/A)).

A global type is a type in Sx(U).

Theorem 5.22. Let θ(x) be a consistent formula with parameters. There is
a global type p ∈ Sx(U) containing θ with MR(p) = MR(θ). If MR(θ) is an
ordinal, then the number of such types is exactly MD(θ).

Proof. Consider the partial type

{θ} ∪ {¬φ | φ ∈ Fx(U) and MR(φ) < MR(θ)}.

It suffices to show that this partial type is consistent, since no complete extension
in Sx(U) contains a formula of Morley rank smaller than MR(θ).

If it is inconsistent, then by compactness there are finitely many formulas
φ1, . . . , φn with MR(φi) < MR(θ) for all i such that {θ,¬φ1, . . . ,¬φn} is incon-
sistent. But then θ implies

∨n
i=1 φi. By Exercise 27, MR(θ) ≤ MR(

∨n
i=1 φi).

But by Lemma 5.17, MR(
∨n
i=1 φi) = max(MR(φ1), . . . ,MR(φn)) < MR(θ),

contradiction.
Now assume MR(θ) = α is an ordinal. Let ψ1, . . . , ψn be a decomposition

of θ into irreducible components. For all 1 ≤ i ≤ n, MR(ψi) = α, so there is a
type in Sx(U) containing ψi of Morley rank α. Since the ψi are contradictory,
there are at least n such types.

In the other direction, note that any type in Sx(U) containing φ contains ψi
for some i. Now suppose that for some i, there are distinct types p ̸= q in Sx(U),
both containing ψi and both having Morley rank α. Let χ be a formula with
χ ∈ p and ¬χ ∈ q. Then MR(ψi ∧ χ) ≥ α and MR(ψi ∧ ¬χ) ≥ α, contradicting
irreducibility of ψi. This shows that there are at most n types of Morley rank
α in Sx(U) containing φ: one for each irreducible component.

Lemma 5.23. Let p ∈ Sx(A) be a type such that MR(p) is an ordinal. Let
φ ∈ p be a type of minimal Morley rank and degree, so MR(φ) = MR(p) = α
and MD(φ) = MD(p) = d. For any set B ⊇ A, if q ∈ Sx(B) contains φ and
MR(q) = α, then q|A = p.

Proof. Suppose for contradiction that q|A ̸= p. Then there is some ψ ∈ Fx(A)
such that ψ ∈ q and ψ /∈ p. Since φ∧ψ ∈ q, MR(φ∧ψ) = α. Since φ∧¬ψ ∈ p,
MR(φ ∧ ¬ψ) = α and MD(φ ∧ ¬ψ) = d. By Lemma 5.20,

MD(φ) = MD(φ ∧ ¬ψ) + MD(φ ∧ ψ) ≥ d+ 1,

which contradicts MR(φ) = d.
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Note that if A ⊆ B and p ∈ Sx(A) extends to a type q ∈ Sx(B), then
MR(q) ≤ MR(p). We say that q is a generic extension of p if MR(q) = MR(p).

Corollary 5.24. Suppose A ⊆ B are sets. Every type p ∈ Sx(A) with ordinal
Morley rank has a generic extension to a type in Sx(B).

Proof. Let φ ∈ p be a formula of minimal Morley rank and degree. By The-
orem 5.22, there is a global type q ∈ Sx(U) with MR(q) = MR(φ) = MR(p).
By Lemma 5.23, p ⊆ q. Then also p ⊆ q|B ⊆ q, so q|B ∈ Sx(B) is a generic
extension of p.

Corollary 5.25. Suppose A ⊆ B are sets and p ∈ Sx(A) has ordinal Morley
rank. If Gp ⊆ Sx(B) is the set of generic extensions of p, then∑

q∈Gp

MD(q) = MD(p).

In particular, Gp is finite, and if MD(p) = 1, then p has a unique generic
extension.

Proof. First note that by Lemma 5.23 and Theorem 5.22, the number of global
generic extensions of p is MD(p). Similarly, each q ∈ Gp has MD(q) global
generic extensions, each of which is a global generic extension of p. The result
follows.

The next exercise outlines an alternative topological way to define Morley
rank and degree. This method is actually closer to Morley’s original definition
and can provide a useful intuition.

For any topological space X, the Cantor-Bendixson derivative of X is
defined to be the subspace X ′ = X \ {x ∈ X | x is isolated in X}. Define by
transfinite recursion:

X0 = X

Xα+1 = (Xα)′

Xγ =
⋂
β<γ

Xβ when γ is a limit ordinal.

The Cantor-Bendixson rank of a point x ∈ X is the maximal ordinal α such
that x ∈ Xα, or ∞ if x ∈ Xα for all ordinals α.

So a point has Cantor-Bendixson rank 0 if it is isolated, Cantor-Bendixson
rank 1 if it is isolated after removing the isolated points, etc.

Exercise 32. For p ∈ Sx(U) define CB(p) to be the Cantor-Bendixson rank of
p in the space Sx(U). For a formula φ ∈ Fx(U), define:

CB(φ) = sup{CB(p) | p ∈ [φ]} ∈ Ord ∪ {±∞}.

(a) If CB(φ) ̸= −∞, show that there is some p ∈ [φ] with CB(p) = CB(φ) (i.e.,
the supremum in the definition of CB(φ) is attained). Use compactness.
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(b) Show that CB(φ) = MR(φ), and when CB(φ) is an ordinal, the number of
points in [φ] of maximal Cantor-Bendixson rank is MD(φ).

(c) For a type p ∈ Sx(A), show that MR(p) = sup{CB(q) | p ⊆ q ∈ Sx(U)} and
when MR(p) is an ordinal, MD(p) is the number of global extensions of p
of maximal Cantor-Bendixson rank.

Example 5.26. Let T be the theory of an equivalence relation with infinitely
many classes, each of which is infinite. In the context of a single variable
x, MR(⊤) = 2 and MD(⊤) = 1. For any a, we have MR(xEa) = 1 and
MD(xEa) = 1.

The type space Sx(U) consists of: (0) The realized types, which are all
isolated and have rank 0. (1) The types which contain xEa for some a but are
not realized in U – such a type is isolated by xEa after removing all the isolated
types, and has rank 1. (2) The unique type of rank 2 which contains ¬xEa for
all a. This is the generic global extension of the unique type in Sx(∅).

Example 5.27. Let T be the theory of an equivalence relation with 2 classes,
each of which is infinite. In the context of a single variable x, MR(⊤) = 1 and
MD(⊤) = 2. For any a, we have MR(xEa) = 1 and MD(xEa) = 1 (the two
classes are the irreducible components of ⊤).

The type space Sx(U) consists of: (0) The realized types, which are all
isolated and have rank 0. (1) The two types which say x is in one of the two
equivalence classes, but which are not realized – such a type is isolated by xEa
after removing all the isolated types, and has rank 1. These two types are both
generic global extension of the unique type in Sx(∅).

Example 5.28. Let T be the theory of an equivalence relation with infinitely
many classes, each of which has size 2. In the context of a single variable
x, MR(⊤) = 1 and MD(⊤) = 1. For any a, we have MR(xEa) = 0 and
MD(xEa) = 2. The irreducible components of xEa are x = a and x = a′,
where a′ is the unique element equivalent to a but not equal to a.

The type space Sx(U) consists of: (0) The realized types, which are all
isolated and have rank 0. (1) The unique type which contains ¬xEa for all a.
Note that if a type contains xEa, then it must contain x = a or x = a′, where
a and a′ are the two elements equivalent to a.
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6 Strongly minimal sets

6.1 Minimality and strong minimality

Definition 6.1. A formula (with parameters) φ is algebraic if φ(U) is finite.
A complete type p ∈ Sx(A) is algebraic if it contains an algebraic formula.

We have seen that φ is algebraic if and only if MR(φ) = 0 or MR(φ) = −∞
(i.e., φ(U) = ∅). In the case MR(φ) = 0, the irreducible components of φ are
singletons, so MD(φ) = |φ(U)|.

An algebraic type is one of Morley rank 0. Note that an algebraic type
p(x) is isolated by an algebraic formula, namely any formula in p(x) of minimal
degree.

The next simplest definable sets are those of Morley rank and degree 1.

Definition 6.2. A formula (with parameters) φ is strongly minimal if it is
not algebraic, but for every other formula (with parameters) ψ, either φ ∧ ψ
or φ ∧ ¬ψ is algebraic. Equivalently, φ is irreducible of Morley rank 1, so
MR(φ) = 1 and MD(φ) = 1.

Definition 6.3. We say that T is strongly minimal if the formula ⊤ in
context x (where x is a singleton) is strongly minimal.

Example 6.4. T∞ is a strongly minimal theory. An atomic formula in the
single variable x is equivalent to ⊤ or ⊥ or x = a, hence defines a finite or
cofinite set. By QE, every formula is equivalent to a Boolean combination of
atomic formulas, which again defines a finite or cofinite set.

Example 6.5. VSk is a strongly minimal theory, for exactly the same reason
as T∞.

Example 6.6. ACFp, where p is prime or 0, is a strongly minimal theory. Just
as in the previous two examples, by QE it suffices to show that every atomic
formula in the single variable x defines a finite or cofinite set. Such a formula is
equivalent to ⊤ or ⊥ or p(x) = 0, where p is some polynomial with coefficients
from U . Since a polynomial in one variable has only finitely many roots in a
field, we are done.

For another example of a strongly minimal formula in ACFp, consider the
formula y = x2, call it φ. There is a definable bijection f : U → φ(U), by
f(a) = (a, a2). If there were some infinite and coinfinite definable subset E ⊆
φ(U), then f−1(E) would be an infinite and coinfinite definable subset of U ,
contradicting strong minimality of ACFp.

On the other hand, the formula y2 = x2 is not strongly minimal, because
the subset defined by y = −x is infinite and coinfinite.

Example 6.7. Let TS be the complete theory of (N; 0, S). TS has quantifier
elimination. An atomic formula in the single variable x is equivalent to ⊤, ⊥,
x = Sn(a), or Sn(x) = a for some n ∈ ω, hence defines a finite or cofinite set.
By QE, TS is strongly minimal.
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Example 6.8. The theory TE is not strongly minimal, since every equivalence
class is a definable infinite coinfinite set. But for any a, the formula xEa defining
the equivalence class of a is strongly minimal. When restricted to realizations
of xEa, every atomic formula in the single variable x is equivalent to ⊤, ⊥, or
x = b for some bEa. By QE, xEa is strongly minimal. We say that the induced
structure on xEa is that of a pure set.

Example 6.9. Let T = Th(
⊕

n∈ω Z/4Z). Consider the formula x + x = 0.
This defines the set V of all elements of order ≤ 2, which is a vector space over
F2. This is not enough to immediately conclude that V is strongly minimal,
since the theory does not have QE and it seems we have to consider subsets of
V defined by formulas with parameters outside of V . However, T is stable (as is
every complete theory of an abelian group), so V is stably embedded. It follows
that the induced structure on V is that of an F2-vector space, so V is strongly
minimal.

Definition 6.10. Let M |= T . An infinite M -definable set D ⊆M is minimal
if every M -definable subset of D is finite or cofinite. An infinite M -definable set
D ⊆M is strongly minimal if the formula φ defining D is strongly minimal,
i.e., if φ(U) is minimal.

Example 6.11. Consider the structure (N; 0, S,≤). That the definable set N
is minimal in this structure, but not strongly minimal (so Th(N; 0, S,≤) is not
strongly minimal).

The complete theory of this structure has quantifier elimination. An atomic
formula in the single variable x is equivalent to ⊤, ⊥, x = Sn(a) or Sn(x) = a
for some n ∈ ω, x ≤ a, or a ≤ x. When a ∈ N, each of these sets is finite
or cofinite, so N is minimal. However, when a is an element of U \ N, the set
defined by x ≤ a is infinite and coinfinite, so N is not strongly minimal.

Example 6.12. Consider the structure (M,E), where E is an equivalence re-
lation on M with one class of size n for each n ∈ ω \ {0} (and no other classes).
The definable set M is minimal in this structure, but not strongly minimal (so
Th(M,E) is not strongly minimal).

The complete theory of this structure has quantifier elimination in the ex-
panded language where we add a unary predicate Pn naming the unique classs
of size n for each n. An atomic formula with parameters from M in the single
variable x in this expanded language is equivalent to ⊤, ⊥, x = a, or Pn(x) for
some n (since xEa is equivalent to Pn(x) when the class of a has n elements).
Each of these sets is finite or cofinite, so M is minimal. However, when a is an
element of U \M , the equivalence class of a is infinite, so the set defined by xEa
is infinite and coinfinite.

Proposition 6.13. Let D ⊆ Mx |= T be a minimal set. Then D is strongly
minimal if and only if for every partitioned formula ψ(x; y), there exists k ∈ ω
such that for all b ∈My, |ψ(D; b)| ≤ k or |D \ ψ(D; b)| ≤ k.

Proof. Let D be defined by φ(x; c). Suppose D is not strongly minimal. Then
there is some formula ψ(x; b) with b ∈ Uy such that φ(x; c)∧ψ(x; b) and φ(x; c)∧
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¬ψ(x; b) both define infinite subsets of Ux. Let k ∈ ω. Then

|= ∃y (∃>kx (φ(x; c) ∧ ψ(x; y)) ∧ ∃>kx (φ(x; c) ∧ ¬ψ(x; y))).

Since M ⪯ U , this formula is also true in M . Letting b′ ∈ My be any witness
to the existential quantifier, we find that |ψ(D; b)| > k and |D \ ψ(D; b)| > k.

Conversely, suppose that there is some formula ψ(x; y) such that for all
k ∈ ω, there exists b ∈ My such that |ψ(D; b)| > k and |D \ ψ(D; b)| > k.
Consider the partial type:

{(∃>kx (φ(x; c) ∧ ψ(x; y)) ∧ ∃>kx (φ(x; c) ∧ ¬ψ(x; y))) | k ∈ ω}.

Our hypothesis (and compactness) implies that the partial type is consistent.
Letting b ∈ Uy be a realization, we find that φ(x; c)∧ψ(x; b) and φ(x; c)∧¬ψ(x; b)
both define infinite subsets of Ux, so φ(x; c) is not strongly minimal.

Definition 6.14. A type p ∈ Sx(A) is strongly minimal if MR(p) = 1 and
MD(p) = 1.

If φ is a strongly minimal formula over A, then there is a unique strongly
minimal type p ∈ Sx(A) containing φ. Moreover, by Corollary 5.25, for any
A ⊆ B, p has a unique non-algebraic extension to a type in Sx(B).

Theorem 6.15. Every strongly minimal theory T is totally transcendental.

Proof. We show T is ℵ0-stable (which suffices by Theorem 5.3). Let A be a set
with |A| = ℵ0. Since x = x is strongly minimal, every type in Sx(A) has Morley
rank ≤ 1. There is a unique type of rank 1, namely the unique non-algebraic
extension of the strongly minimal type in Sx(∅). Every other type has rank 0,
and hence is algebraic and isolated by some algebraic formula in Fx(A). Since
|Fx(A)| = ℵ0, |Sx(A)| ≤ ℵ0 + 1 = ℵ0.

Later, we will prove a stronger result: Every strongly minimal theory is
κ-categorical for every uncountable cardinal κ.

6.2 Algebraic closure

Definition 6.16. For a set A, we define

acl(A) = {b ∈ U | b satisfies an algebraic formula over A}
= {b ∈ U | tp(b/A) is algebraic}.

Since the number of algebraic formulas over A is at most max(ℵ0, |A|), and
each is satisfied by only finitely many elements of U , |acl(A)| ≤ max(ℵ0, |A|).

Example 6.17. Let’s look at acl in each of our standard strongly minimal
theories:

1. In T∞, acl(A) = A.
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2. In VSk, acl(A) = Span(A).

3. In ACFp, with p prime or 0, acl(A) is the (field-theoretic) algebraic closure
of the subfield generated by A. This is the reason for the name.

An important property of acl is that it does not depend on the ambient
model.

Proposition 6.18. Suppose A ⊆M ⪯ U . Then acl(A) ⊆M .

Proof. Suppose b ∈ acl(A). Then b satisfies an algebraic LA-formula φ(y). Say
φ(y) is satisfied by k elements of U . Then

|= ∃=ky φ(y),

so also M |= ∃=ky φ(y). Since M ⪯ U , the k elements of M satisfying φ also
satisfy φ in U . It follows that all k elements of U satisfying φ, including b, are
already in M .

Proposition 6.19. For any small set A,

acl(A) =
⋂

A⊆M⪯U

M.

Proof. By Proposition 6.18, for all models M such that A ⊆ M ⪯ U , acl(A) ⊆
M . So

acl(A) ⊆
⋂

A⊆M⪯U

M.

For the reverse inclusion, suppose b ∈ U \ acl(A). We would like to find a model
M such that A ⊆M ⪯ U but b /∈M .

Let M ′ be any small elementary substructure of U containing A. Consider
the partial type Σ = p∪{x ̸= m | m ∈M ′}. If Σ were inconsistent, then by com-
pactness there would be some LA-formula φ(x) ∈ p and some m1, . . . ,mn ∈M ′

such that φ(x) |=
∨n
i=1 x = mi. But then φ(x) would be algebraic, contradic-

tion. Let q ∈ Sx(M ′) be a complete type over M ′ extending Σ, and let b′ ∈ Uy
realize q. Then b′ /∈M ′ and tp(b′/A) = tp(b/A).

By homogeneity of U , let σ ∈ Aut(U/A) be an automorphism fixing A with
σ(b′) = b. Let M = σ(M ′). Then b /∈M and A ⊆M ⪯ U , as desired.

Proposition 6.20. Suppose A and B are small sets in U and f : A → B is a
partial elementary bijection. Then f extends to a partial elementary bijection
f̂ : acl(A) → acl(B).

Proof. Let σ ∈ Aut(U) be an automorphism extending f , and let f̂ = σ|acl(A).

It remains to show that the image of f̂ is acl(B). But c ∈ acl(B) iff c satisfies
an algebraic formula φ(x; b) over B iff σ−1(c) satisfies an algebraic formula

φ(x;σ−1(b)) over A iff c = f̂(σ−1(c)) ∈ im(f̂).
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Definition 6.21. Let X be a set. A closure operator on X is a function
cl : P(X) → P(X) such that for all A,B ⊆ X:

(1) (Reflexive) A ⊆ cl(A).

(2) (Monotone) If A ⊆ B, then cl(A) ⊆ cl(B).

(3) (Idempotent) cl(cl(A)) = cl(A).

A closure operator is finitary if additionally:

(4) cl(A) =
⋃
F⊆finA

cl(F ).

If cl is a closure operator on a set X, we say that C ⊆ X is closed if cl(C) = C.

Proposition 6.22. For any model M , acl is a finitary closure operator on M .

Proof. Reflexive: Suppose a ∈ A. Then a satisfies the algebraic formula x = a
over A, so a ∈ acl(A).

Monotone: Suppose A ⊆ B. Then every algebraic formula over A is also an
algebraic formula over B, so acl(A) ⊆ acl(B).

Idempotent: Since A ⊆ acl(A) we have acl(A) ⊆ acl(acl(A)) by monotonic-
ity. So it suffices to show acl(acl(A)) ⊆ acl(A). Let c ∈ acl(acl(A)). Then c
satisfies an algebraic formula φ(z, b1, . . . , bn), where b1, . . . , bn ∈ acl(A). Let
k = |φ(U , b1, . . . , bn)|. Now since each bi ∈ acl(A), it satisfies an algebraic
formula ψi(yi) over A. It follows that c satisfies the formula θ(z):

∃y1 . . . yn
(
φ(z, y1, . . . , yn) ∧ ∃≤kwφ(w, y1, . . . , yn) ∧

∧
ψi(yi)

)
.

It remains to show that θ(z) is algebraic. Since each ψi is algebraic, there
are only finitely many tuples b′1, . . . , b

′
n witnessing the existential quantifiers.

And each such witnessing tuple, there are at most k elements c′ satisfying
φ(c′, b′1, . . . , b

′
n). So θ(z) is algebraic.

Finitary: In one direction, for all finite F ⊆ A, acl(F ) ⊆ acl(A) by mono-
tonicity, so ⋃

F⊆finA

acl(F ) ⊆ acl(A).

Conversely, suppose b ∈ acl(A). Then b satisfies some algebraic formula φ(y)
over A. Let F be the finitely many parameters from A appearing in φ(y). Then
b ∈ acl(F ). So

acl(A) ⊆
⋃

F⊆finA

acl(F ).

Exercise 33. Let cl be a closure operator on a set X.

(a) For C ⊆ X, define clC(A) = cl(A ∪ C), the localization of cl by C. Show
that clC is a closure operator on X, which is finitary if cl is finitary.

(b) For D ⊆ X, define clD(A) = cl(A) ∩D, the restriction of cl to D. Show
that clD is a closure operator on D, which is finitary if cl is finitary.
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6.3 Pregeometries and dimension

Definition 6.23. A pregeometry (or finitary matroid) is a set X equipped
with a finitary closure operator cl satisfying exchange: For all C ⊆ X and
a, b ∈ X, if a ∈ cl(C ∪ {b}) but a /∈ cl(C), then b ∈ cl(C ∪ {a}).

Let D ⊆M |= T be a strongly minimal set, and fix a set C ⊆M over which
D is definable. For A ⊆ D, we define cl(A) = acl(A ∪ C) ∩D. Note that this
is the restriction to D of the localization of acl by C, so by Exercise 33, it is a
finitary closure operator on D.

Theorem 6.24. Let D be a C-definable strongly minimal set. Then (D, cl) is
a pregeometry.

Proof. Let θ(x) be the LC-formula defining D. Since cl is always a finitary
closure operator on D, it suffices to show that cl satisfies exchange. Suppose
a ∈ cl(A∪{b}) and a /∈ cl(A), and assume for contradiction that b /∈ cl(A∪{a}).
Let φ(x, b) be a formula over C∪A∪{b} which implies θ(x) and is algebraic, say
satisfied by k elements, one of which is a. Let ψ(y) be the formula ∃≤kxφ(x, y),
and note that |= ψ(b).

Since b /∈ cl(A ∪ {a}), the formula φ(a, y) ∧ ψ(y) is not algebraic, so its
complement in D, θ(y)∧¬(φ(a, y)∧ψ(y)) is algebraic, say satisfied by ℓ elements.
Let χ(x) be the formula ∃≤ℓy (θ(y) ∧ ¬(φ(x, y) ∧ ψ(y))), and note that |= χ(a).

Since a /∈ cl(A), χ(x) is not algebraic. So it defines a cofinite subset of D,
and we can pick k+ 1 distinct elements satisfying it, say a1, . . . , ak+1. For each
i, there are at most ℓ elements of D satisfying ¬(φ(ai, y)∧ψ(y)), so we can pick
some b′ ∈ D such that φ(ai, b

′) for all 1 ≤ i ≤ k + 1 and also ψ(b′). But this
contradicts the definition of ψ(y).

Exercise 34. A geometry is a pregometry (X, cl) such that cl(∅) = ∅ and
cl({a}) = {a} for all a ∈ X.

(a) Let (X, cl) be a pregometry. Define x ∼ y if and only if x ∈ cl({y}). Show
that ∼ defines an equivalence relation on X \ cl(∅).

(b) Define X ′ = (X \cl(∅))/∼. Show that cl induces a natural closure operator
cl′ on X ′ and that (X ′, cl′) is a geometry.

The geometry (X ′, cl′) is called the associated geometry to (X, cl).

Example 6.25. (1) Let M |= T∞. Then M is a strongly minimal set, defined
over ∅, and we have cl(A) = acl(A) = A for all sets A. This is already a
geometry, called the trivial geometry.

(2) Consider the strongly minimal theory TS from Example 6.7. A general
model M |= TS looks like (N, 0, S), together with some number of chains
isomorphic to (Z, S). In this strongly minimal set, we have cl(∅) = N, while
for any a /∈ cl(∅), cl({a}) is the chain containing a. The associated geometry
removes N and collapses each chain down to a single point. There are no
algebraic dependencies between points in distinct chains, so this associated
geometry is again the trivial geometry.
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(3) Let V |= VSk be a vector space over k. We have cl(∅) = {0} and cl({v}) =
Span(v) is the line through the origin containing the vector v. The asso-
ciated geometry has as its points the set of lines through the origin in V .
This geometry is denoted P(V ), the projective space associated to V .

Zilber famously conjectured that for every strongly minimal set D, the ge-
ometry associated to (D, cl) is either:

(1) The trivial geometry (cl(A) = A for all A).

(2) The geometry of an affine or projective space over a division ring.

(3) The geometry of algebraic independence in an algebraically closed field.

This conjecture was refuted by Hrushovski, who used a modification of the
Fräıssé limit construction to produce a strongly minimal set whose associated
geometry does not fit into this trichotomy.

Definition 6.26. Let (X, cl) be a pregeometry. A subset B ⊆ X is:

• independent if for all b ∈ B, b /∈ cl(B \ {b}).

• a generating set if cl(B) = X.

• a basis if it is an independent generating set.

Suppose B ⊆ B′. If B′ is independent, B is independent, since for b ∈ B,
b ∈ cl(B \ {b}) implies b ∈ cl(B′ \ {b}). If B is a generating set, then B′ is a
generating set, since X = cl(B) ⊆ cl(B′) ⊆ X.

Lemma 6.27. Suppose I is an independent set in the pregeometry X. For any
a ∈ X \ cl(I), I ∪ {a} is independent.

Proof. Let I ′ = I ∪ {a}. Suppose for contradiction that I ′ is not independent.
Then there is some b ∈ I ′ such that b ∈ cl(I ′ \ {b}). If b = a, then a ∈ cl(I),
contradiction. If b ̸= a, let J = I\{b}, so b ∈ cl(J∪{a}). Since I is independent,
b /∈ cl(J), so by exchange a ∈ cl(J ∪ {b}) = cl(I), contradiction.

Theorem 6.28. Suppose B is an independent set in the pregeometry X. Then
B can be extended to a basis for X.

Proof. Apply Zorn’s Lemma to the poset of independent subsets of X containing
B. If (Bi)i∈I is a chain of independent subsets of X, we must show that B∗ =⋃
i∈I Bi is independent. Let b ∈ B∗. If b ∈ cl(B∗ \ {b}), then by local finiteness

b ∈ cl({b1, . . . , bn}) for some b1, . . . , bn ∈ B∗ \ {b}. Then there is some i ∈ I
such that b, b1, . . . , bn ∈ Bi, so b ∈ cl(Bi \ {b}), contradicting the fact that Bi is
independent.

Let M be a maximal independent subset of X containing B. By Lemma 6.27,
if there is some x ∈ X \ cl(M), then M ∪ {x} is independent, contradicting
maximality. So cl(M) = X, and hence M is a basis for X.
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Theorem 6.29. Let X be a pregeometry. If A ⊆ X is independent and C ⊆ X
is a generating set, then |A| ≤ |C|.

Proof. Enumerate A = (aα)α<κ (note κ = |A| may be finite!). By transfinite
induction, we define elements (cα)α<κ from C and prove that that for all β ≤ κ,
Aβ = {cα | α < β} ∪ {aα | β ≤ α < κ} is independent. Note that Aβ+1 =
(Aβ \ {aβ}) ∪ cβ . So we define cβ at the successor step γ = β + 1. At the end
of the induction, we have distinct elements (cα)α<κ from C, so |A| = κ ≤ |C|.

Base case: When β = 0, A0 = A is independent.
Limit step: When β is a limit, suppose for contradiction that Aβ is not

independent. By local finiteness, some finite set is dependent, say

cα1
, . . . , cαn

, aαn+1
, . . . , aαm

with α1 < · · · < αn < β ≤ αn+1 < · · · < αm. But these elements are all in
Aαn+1 with αn + 1 < β, which is independent by induction.

Successor step: When β = α + 1, we must define cα. I first claim that
C ̸⊆ cl(Aα \ {aα}). If not, we would have aα ∈ X = cl(C) ⊆ cl(Aα \ {aα}), con-
tradicting independence of Aα. So we can pick any cα ∈ C \cl(Aα \{aα}). Note
that since Aα \ {aα} ⊆ Aα, the set Aα \ {aα} is independent. By Lemma 6.27,
Aα+1 = (Aα \ {aα}) ∪ {cα} is independent.

Corollary 6.30. If B and B′ are bases for the pregeometry X, then |B| = |B′|.

Proof. Since B is independent and B′ is a generating set, |B| ≤ |B′|. Since B′

is independent and B is a generating set, |B′| ≤ |B|. So |B| = |B′|.

Note that by Theorem 6.28, every pregeometry X has a basis (by extending
the independent set ∅ to a basis), and by Corollary 6.30, every basis has the
same cardinality. We define dim(X), the dimension of X, to be the cardinality
of any basis.

With a well-defined notion of dimension in hand, we return to the context
of strongly minimal sets. The first thing to notice is that pregeometries arising
from strongly minimal sets are homogeneous: any two independent tuples of
the same length have the same type.

Proposition 6.31. Let D ⊆ M |= T be a strongly minimal set, defined over
C. For every n, there is a type pn(x1, . . . , xn) ∈ Sn(C) which is satisfied by any
independent tuple of size n from D. Any independent set of elements of D is a
C-indiscernible set.

Proof. We proceed by induction on n. When n = 1, a single element b1 is
independent if b1 /∈ cl(∅) = acl(C). So tp(b1/C) is the unique non-algebraic
type in S1(C).

Now consider independent tuples b1, . . . , bn and b′1, . . . , b
′
n. By the induc-

tive hypothesis, tp(b1, . . . , bn−1/C) = tp(b′1, . . . , b
′
n−1/C) = pn−1, so the map

f(bi) = b′i is a partial elementary map. It remains to show that

tp(b′n/Cb
′
1 . . . b

′
n−1) = f∗tp(bn/Cb1 . . . bn−1)
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so that tp(b1, . . . , bn/C) = tp(b′1, . . . , b
′
n/C) = pn.

Now bn /∈ cl(b1, . . . , bn−1) = acl(Cb1 . . . bn−1), so tp(bn/Cb1 . . . bn−1) is the
unique non-algebraic type in S1(Cb1 . . . bn−1). Similarly, tp(b′n/Cb

′
1 . . . b

′
n−1) is

the unique non-algebraic type in S1(Cb′1 . . . b
′
n−1). But since f is partial elemen-

tary, an LC-formula φ(x, b1, . . . , bn) is algebraic if and only if φ(x, b′1, . . . , b
′
n)

is algebraic. So f∗ : S1(Cb1 . . . bn−1) → S1(Cb′1 . . . b
′
n−1) maps the unique non-

algebraic type to the unique non-algebraic type.
Let I ⊆ D be an independent set. Since any two tuples of distinct elements

from I have the same type over C, I is a C-indiscernible set.

The next theorem illustrates the idea of classifying models by the dimension
of a strongly minimal set.

Theorem 6.32. If T is a strongly minimal theory, then T is κ-categorical for
every uncountable cardinal κ.

Proof. Let κ be an uncountable model, and let M and N be two models of T
of cardinality κ. Since T is strongly minimal, M itself is a strongly minimal
set. Let BM ⊆ M be a basis. Then M = acl(BM ), so κ = |M | = |acl(BM )| =
max(ℵ0, |BM |), and thus |BM | = κ (here we use that κ > ℵ0). Similarly, let
BN ⊆ N be a basis. By the same argument, |BN | = κ.

Let f : BM → BN be any bijection. Then f is partial elementary, since
any tuple b1, . . . , bn of distinct elements from BM satisfies the same type pn
(from Proposition 6.31) as f(b1), . . . , f(bn). By Proposition 6.20, f extends to

a partial elementary bijection f̂ : acl(BM ) → acl(BN ). But acl(BM ) = M and
acl(BN ) = N , and a partial elementary bijection between two models is an
isomorphism.
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7 The theorems of Morley and Baldwin–Lachlan

In Theorem 6.32, we saw that every strongly minimal theory T is κ-categorical
for every uncountable cardinal κ, because models of T can be classified up
to isomorphism by their dimension (which is equal to their cardinality in the
uncountable case). Fixing an uncountable κ, we would like to extend this clas-
sification result to arbitrary κ-categorical theories, not all of which are strongly
minimal. In the non-strongly-minimal case, there are two major obstacles. I
will now give a brief overview of these obstacles and a sketch of how we will
overcome them.

First, since T is totally transcendental, there must be a strongly minimal
formula φ(x; c), possibly with parameters c ∈ Uy. If a model M |= T contains c
(or even any realization of tp(c/∅)), then φ(M ; c) is a strongly minimal set, and
we can assign a “φ-dimension” to M . But if tp(c/∅) is not isolated, there will
be models of T which omit this type. We will show that when T is κ-categorical,
there is a strongly minimal formula with parameters in the prime model of T .
Since the prime model embeds elementarily in every model of T , we can assume
that every model contains these parameters and use this fixed strongly minimal
formula φ(x) to assign a φ-dimension to every model of T .

Second, suppose we have two models M and N of the same φ-dimension.
Writing DM = φ(M ; c) and DN = φ(N ; c) for the strongly minimal sets, we
obtain a partial elementary bijection f : DM → DN , which can be extended
to a partial elementary bijection acl(DM ) → acl(DN ). If every model of T is
contained in the algebraic closure of its strongly minimal set, we are done (in
this case, we say T is almost strongly minimal). But in general, we need
to work harder. An example of an uncountably categorical theory which is not
almost strongly minimal is the theory of the abelian group

⊕
n∈ω Z/4Z from

Example 6.9. Another is the theory of the ring of dual numbers C[x]/(x2) over
the complex numbers.

For the general case, we recall that since T is totally transcendental, M
contains a prime model P over DM . Identifying P with its image under an
elementary embedding P → M , we have DM ⊆ P ⊆ M . By primeness, the
partial elementary bijection f : DM → DN extends to an elementary embedding
e : P → N . So we have DN ⊆ e(P ) ⊆ N .

Note that DM = φ(P ; c) = φ(M ; c), so if M is a proper elementary extension
of P , then it is a proper elementary extension which does not add any new
elements satisfying the formula φ(x; c). Such a situation, P ≺M with φ(P ; c) =
φ(M ; c), is called a Vaughtian pair. We will show that κ-categorical theories
have no Vaughtian pairs. It follows that M = P and by the same argument
N = e(P ), so e is the desired isomorphism M ∼= N .

To sum up: For a κ-categorical theory T , we will show that there is a
strongly minimal formula φ(x) with parameters in the prime model, and every
model M |= T is prime and minimal over φ(M) (i.e., has no proper elementary
substructure containing φ(M), by the prohibition on Vaughtian pairs). It fol-
lows that if the strongly minimal set defined by φ(x) has the same dimension
in M and N , then M ∼= N .
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7.1 Vaughtian pairs and (κ, λ)-models

What is the relationship between the cardinality of a model and the cardinalities
of definable sets in that model? The Löwenheim–Skolem theorem gives us es-
sentially the maximum flexibility in the cardinalities of infinite models. Perhaps
surprisingly, it is much harder in general to control the cardinalities of infinite
definable sets.

Definition 7.1. A model M |= T is crowded if for every non-algebraic LM -
formula φ(x), |φ(M)| = |M |.

Note that every countable model is crowded, since every definable set must
be countable. Also, every saturated model is crowded: if we have ℵ0 ≤ |φ(M)| <
|M |, then the type {φ(x)} ∪ {x ̸= m | m ∈ φ(M)} is a consistent partial type
over φ(M) which is not realized in M , so M is not saturated. But unlike
saturated models, we can easily build crowded models of cardinality κ, with no
hypotheses on T or κ.

Lemma 7.2. For every infinite κ, T has a crowded model of cardinality κ.

Proof. We build an elementary chain (Mn)n∈ω of models of cardinality κ, such
that every non-algebraic LMn

-definable set has size κ in Mn+1. Let M0 be
any model of cardinality κ. Given Mn, let F be the set of non-algebraic
LMn

-formulas. For each φ(x) ∈ F , introduce κ-many new tuples of constants
(cφα)α<κ, each of length |x|. Consider the theory

Tn+1 = EDiag(Mn) ∪ {cφα ̸= cφβ | φ ∈ F , α < β < κ} ∪ {φ(cφα) | φ ∈ F , α < κ}.

This is consistent by compactness, since each φ ∈ F is non-algebraic. Since
|Mi| = κ, there are κ-many constants naming the elements of Mi, |F| = κ,
and for each formula φ(x) ∈ F there are κ-many new constants, so in total the
language of Tn+1 has size κ. Thus we can find a model Mn+1 |= Tn+1 with
|Mn+1| = κ. Let N =

⋃
n∈ωMn. Then M ⪯ N , |N | = κ, and N is crowded.

For any non-algebraic LN -formula φ(x), the parameters in φ occur already in
some Mn ⪯ N , and φ(x) is non-algebraic in Mn. Then |φ(Mn+1)| = κ and
φ(Mn+1) ⊆ φ(N) ⊆ Nx, so |φ(N)| = κ.

It follows that if T is κ-categorical, then every model of cardinality κ is
crowded. The following definition quantifies failures of crowdedness.

Definition 7.3. Let κ > λ be infinite cardinals. A (κ, λ)-model is a pair
(M,φ(x)), where M |= T , φ(x) is an LM -formula, |M | = κ, and |φ(M)| = λ.

Robert Vaught showed that the existence of a non-crowded model (equiva-
lently, a (κ, λ)-model for some κ > λ), is equivalent to a condition which is “set
theory free” in the sense that it doesn’t mention cardinals.

Definition 7.4. A Vaughtian pair is a triple (M,N,φ(x)), where M ≺ N
and φ(x) is a non-algebraic LM -formula such that φ(M) = φ(N).
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Theorem 7.5 (Vaught’s two-cardinal theorem). The following are equivalent:

(1) T has a Vaughtian pair.

(2) T has a (κ, λ)-model for some infinite cardinals κ > λ.

(3) T has an (ℵ1,ℵ0)-model.

Moreover, the same formula can be used as a witness in all three conditions.

We aim to prove this theorem, along with the following extension due to
Alistair Lachlan.

Theorem 7.6. Let T be totally transcendental. If T has a Vaughtian pair, then
for every uncountable cardinal κ, T has a (κ,ℵ0)-model (using the same formula
as a witness).

Before proceeding with the proofs of these theorems, I’ll show how they
imply our result that κ-categorical theories have no Vaughtian pairs, and I’ll
give some further discussion.

Corollary 7.7. Let κ be an uncountable cardinal. If T is κ-categorical, then T
has no Vaughtian pairs.

Proof. Suppose T is κ-categorical. By Corollary 4.21 (and Theorem 5.3), T is
totally transcendental. Assume for contradiction that T has a Vaughtian pair.
By Theorem 7.6, T has a (κ,ℵ0)-model. In particular, M is not crowded. But
by Lemma 7.2, T has a crowded model N of cardinality κ. Then M ̸∼= N ,
contradicting κ-categoricity.

Theorem 7.6 is sufficient for our purposes, but Lachlan later proved a more
general result, with weaker hypotheses and a stronger conclusion.

Theorem 7.8 (Lachlan’s two-cardinal theorem). Suppose T is stable. The
following are equivalent:

(1) T has a Vaughtian pair.

(2) T has a (κ, λ)-model for some infinite cardinals κ > λ.

(3) T has a (κ, λ)-model for all infinite cardinals κ > λ.

Moreover, the same formula can be used as a witness in all three conditions.

The proof of Theorem 7.8 uses more technical tools from stability theory
than we have developed so far, and we don’t need it for the proof of Morley’s
theorem, so I will omit it. But I’d like to give an example showing that some
hypothesis on T (e.g., stability) are necessary if we want to get (κ, λ)-models
with κ and λ “far apart”.
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Example 7.9. Consider the language L = {S, P,∈}, where S and P are unary
predicates and ∈ is a binary relation. Let M = ω ⊔ P(ω), where SM = ω,
PM = P(ω), and ∈ is the usual elementhood relation between ω and P(ω). Let
T = Th(M), and note that T contains the sentence asserting “extensionality”:

∀y∀z((P (y) ∧ P (z) ∧ ∀x (x ∈ y ↔ x ∈ z)) → y = z)

The standard model M , together with the formula S(x), is a (2ℵ0 ,ℵ0)-model
of T . Let N ≺ M be an elementary substructure of cardinality ℵ1 containing
ω. This is an (ℵ1,ℵ0)-model, as promised by Vaught’s two-cardinal theorem,
and (N,M,S(x)) is a Vaughtian pair. But T has no (κ, λ)-model witnessed
by S(x) for κ > 2λ: if |S(N)| = λ, then by extensionality |P (N)| ≤ 2λ, and
|N | = |S(N)| + |P (N)| ≤ 2λ.

Note that T is unstable, so this example does not contradict Lachlan’s two-
cardinal theorem. For example, in any model N |= T with |S(N)| = κ, there
are 2κ-many complete types over S(N) containing P (x), one for every “real”
subset of N .

Now we will proceed with the proof of Theorems 7.5 and 7.6. We first show
that we can capture the notion of a Vaughtian pair for T by a first-order theory.

Definition 7.10. Fix a partitioned formula φ(x; y). Let LφVP be the language
extending L by a new unary predicate P and a new tuple of constant symbols
c = (c1, . . . , c|y|) of length |y|. Define the LφVP-theory TφVP extending T by new
axioms:

(1) P is an L-elementary substructure. By the Tarski–Vaught test, we can
express this with the following axioms, one for each L-formula ψ(w, z) with
w a singleton:

∀z

 |z|∧
i=1

P (zi) → ((∃wψ(w, z)) → ∃w (P (w) ∧ ψ(w, z)))

 .

(2) P is a proper elementary substructure: ∃w¬P (w).

(3) The parameters are in P :
∧|y|
i=1 P (ci).

(4) P contains the set defined by φ(x; c): ∀x (φ(x; c) →
∧|x|
i=1 P (xi)).

(5) The set φ(x; c) is infinite: for all n ∈ ω, ∃≥nxφ(x; c).

We have (M ;N, a) |= TφVP if and only if N ≺ M , a ∈ Ny, and φ(N, a) =
φ(M,a) is infinite. That is, a model of TφVP is exactly a Vaughtian pair for T
witnessed by an instance of φ.

If T has a Vaughtian pair, the TφVP is consistent for some φ(x; y). Working
with models of TφVP, we will obtain a particularly nice Vaughtian pair, in which
the models are countable and sufficiently homogeneous.
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Definition 7.11. A model M is ℵ0-homogeneous if for every partial elemen-
tary map f : A → M with A ⊆ M finite, and every b ∈ M , f extends to a
partial elementary map A ∪ {b} →M .

Lemma 7.12. Suppose M and N are countable models of T which are ℵ0-
homogeneous and realize exactly the same types in Sn(∅) for all n ∈ ω. Then
any partial elementary map f : A→ N , where A is a finite subset of M , can be
extended to an isomorphism M ∼= N .

Proof. Enumerate M = (mi)i∈ω and N = (ni)i∈ω. We define (by back-and-
forth) a sequence of partial elementary maps (fi)i∈ω extending f such that
{mj | j < i} ⊆ dom(fi) and {nj | j < i} ⊆ ran(fi) for all i. Then fω =

⋃
i∈ω fi

is a partial elementary map extending f with M ⊆ dom(fω) and N ⊆ ran(fω),
i.e., an isomorphism M ∼= N .

Let f0 = f . Given fi, let A = dom(fi), and write A = {a0, . . . , ak}. Simi-
larly, let B = ran(fi), and write B = {b0, . . . , bk} with f(aj) = bj for all j. Let
pi = tp(a0, . . . , ak,mi). Since M and N realize the same types, pi is realized by
some b′0, . . . , b

′
k, b

′
k+1 ∈ N , so the map h defined by aj 7→ b′j and mi 7→ b′k+1 is

partial elementary.
Now

tp(b′0, . . . , b
′
k) = tp(a0, . . . , ak) = tp(b0, . . . , bk),

since f is partial elementary. So the map g defined by b′j 7→ bj for j ≤ k is partial
elementary. Since N is ℵ0-homogeneous, g extends to a partial elementary
map g′ which includes b′k+1 in its domain, say b′k+1 7→ bk+1. Define f ′i =
fi∪{(mi, bk+1)}. This is partial elementary because f ′i = g′◦h is the composition
of two partial elementary maps.

By a symmetric argument, this time using ℵ0-homogeneity of M , we can
extend f ′i to a partial elementary map fi+1 which includes ni in its range.

Lemma 7.13. Suppose T has a Vaughtian pair. Then T has a Vaughtian pair
(N,M,φ(x)) such that N and M are countable and ℵ0-homogeneous and realize
the same types over ∅.

Proof. If T has a Vaughtian pair, then TφVP is consistent. By Löwenheim–
Skolem, TφVP has a countable model, which is a Vaughtian pair (N,M,φ(x; b))
with N and M countable.

Write M0 for this Vaughtian pair, viewed as a model of TφVP. We will build
an elementary chain (Mn)n∈ω of countable models of TφVP. We will alternate
steps of the construction. At odd stages, we will ensure that P (Mn+1) realizes
every L-type over ∅ realized in Mn. At even stages, we will enforce instances
of ℵ0-homogeneity for Mn and P (Mn).

Odd stages: We are given Mn with n even. Let X be the set of all L-types in⋃
n∈ω S

L
n (∅) realized in Mn. Since Mn is countable, it contains countably many

finite tuples, so X is countable. For each type p(z) ∈ X, consider the LφVP-type

p′(z) = p(z)∪{
∧|z|
i=1 P (zi)}. Since every formula in p(z) is satisfiable in Mn and

P (Mn) ≺Mn, every formula in p(z) is satisfiable in P (Mn), and hence p′(z) is
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consistent by compactness. Thus we can find a countable elementary extension
Mn ≺Mn+1 realizing p′(z) for all p(z) ∈ X.

Even stages: We are given Mn with n odd. Let Y be the set of all triples
(A, f, a), where A is a finite subset of Mn, f : A→Mn is a partial L-elementary
map, and a ∈Mn. Since Mn is countable, Y is countable. For all (A, f, a) ∈ Y ,
let pA,f,a(x) be f∗tpL(a/A). If A ⊆ P (Mn), f(A) ⊆ P (Mn), and a ∈ P (Mn),
include the formula P (x) in pA,f,a(x). Consistency of f∗tpL(a/A) is clear, since
the pushforward of a consistent type is consistent. In the case where we include
P (x), note that for every formula ψ(x) ∈ tp(a/A), f∗ψ(x) is satisfiable in P (Mn)
since f is partial elementary, so f∗ψ(x)∧P (x) is satisfiable in Mn, so pA,f,a(x) is
consistent by compactness. Thus we can find a countable elementary extension
Mn ≺Mn+1 realizing pA,f,a(x) for all (A, f, a) ∈ Y .

Now let Mω =
⋃
n∈ωMn. Then Mω is countable. Write Nω for P (Mω).

Since Mω |= TφVP, (Nω,Mω, φ(x; b)) is a Vaughtian pair of countable models of
T . I claim that Nω and Mω realize the same types over ∅. Since Nω ≺ Mω,
every type realized in Nω is realized in Mω. Conversely, let a be a finite tuple in
Mω. Then a ∈Mn for sufficiently large even n, and tp(a) is realized in P (Mn+1)
and hence in Nω.

It remains to show that Nω and Mω are ℵ0-homogeneous. Let A be a finite
subset of Mω, f : A → Mω a partial elementary map and a ∈ Mω. Then the
finite set A ∪ f(A) ∪ {a} is contained in Mn for sufficiently large odd n, and
f∗tp(a/A) is realized in Mn+1, and hence in Mω, say by a′. Then f ∪ {(a, a′)}
is a partial elementary map A∪{a} →Mω, so Mω is ℵ0-homogeneous. For Nω,
the same argument works, noting that our construction ensures that f∗tp(a/A)
is realized in P (Mn+1), and hence in Nω.

Proof of Theorem 7.5. (3)⇒(2): Trivial.
(2)⇒(1): Suppose (M,φ(x)) is a (κ, λ)-model for some infinite κ > λ. By

Löwenheim–Skolem, let N ≺M be an elementary substructure containing φ(M)
with |N | = λ. Then (N,M,φ(x)) is a Vaughtian pair.

(1)⇒(3): Suppose T has a Vaughtian pair. By Lemma 7.13, T has a Vaugh-
tian pair (N,M,φ(x)) such that N and M are countable and ℵ0-homogeneous
and realize the same types over ∅. Note that by Lemma 7.12, N ∼= M , but this
isomorphism is not the inclusion (which is not surjective).

We build an elementary chain (Nα)α<ℵ1
such that for all α, Nα is countable

and ℵ0-homogeneous and realizes the same types as N over ∅, and such that
φ(Nα) = φ(N).

Let N0 = N . The conditions are trivially satisfied.
For the successor step, write A for the finite set of parameters from N

appearing in φ(x). Since N ⪯ Nα, the identity map A → Nα extends to an
isomorphism N ∼= Nα by Lemma 7.12. Then Nα has a proper elementary
extension Nα ≺ Nα+1 (isomorphic to the extension N ≺M) such that Nα+1 is
countable and ℵ0-homogeneous and realizes the same types over ∅ as Nα (and
hence the same types as N), and such that φ(Nα+1) = φ(Nα) = φ(N).

When γ < ℵ1 is a limit ordinal, let Nγ =
⋃
α<γ Nα. Since γ is countable,

Nγ is countable. We have φ(Nγ) =
⋃
α<γ φ(Nα) = φ(N). Since N ≺ Nγ , every
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type realized in N is realized in Nγ . Conversely, any finite tuple b from Nγ
appears already in some Nα for α < γ and has the same type in Nγ as in Nα.
Since Nα and N realize the same types, tp(b) is realized in N .

It remains to show that Nγ is ℵ0-homogeneous. Suppose A is a finite subset
of Nγ , f : A → Nγ is partial elementary, and b ∈ Nγ . Pick α < γ sufficiently
large so that Nα contains the finite set dom(f)∪ ran(f)∪{b}. Then since Nα is
ℵ0-homogeneous, f : A→ Nα extends to a partial elementary map f : A∪{b} →
Nα. This is sufficient, since Nα ≺ Nγ .

The elementary chain argument in the proof of Vaught’s two-cardinal theo-
rem does not allow us to extend past ℵ1, since the model of size ℵ1 constructed
in the proof is no longer isomorphic to the base model N in the Vaughtian pair.
To obtain a (κ,ℵ0)-model, we will use the same elementary chain idea, but we
need a new way to find a proper elementary extension which does not add any
new elements satisfying φ(x).

Definition 7.14. Let M |= T . A partial type p is countably satisfiable in
M if for all Σ ⊆ p with |Σ| ≤ ℵ0, Σ is realized in M .

Recall that a partial type over M is consistent if and only if it is finitely
satisfiable in M . Indeed, finitely satisfiable in M implies consistent by com-
pactness. Conversely, if p is consistent, then for any φ1(x), . . . , φn(x) ∈ p(x),
the conjunction

∧n
i=1 φi(x) is consistent, so U |= ∃x

∧n
i=1 φi(x), and thus also

M |= ∃x
∧n
i=1 φi(x). Countably satisfiable is a natural strengthening of this

condition.

Lemma 7.15. Let T be totally transcendental. If M |= T is uncountable, then
there is a proper elementary extension M ≺ N such that every complete type
over M realized in N is countably satisfiable in M .

Proof. Let’s say an LM -formula φ(x) is large if φ(M) is uncountable. Otherwise,
φ(x) is small. I claim that there is an LM -formula θ(x) in a single variable x
which is minimally large in the sense that θ is large and for any other LM -
formula ψ(x), either θ ∧ ψ or θ ∧ ¬ψ is small.

Suppose for contradiction that there is no minimally large LM -formula. We
build a binary tree of large formulas (φg(x))g∈2<ω , contradicting T totally tran-
scendental. Let φ∅ be ⊤ in context x. This is large, since M is uncountable.
Given φg(x), since φg(x) is not minimally large, there is some formula ψ(x) such
that φg∧ψ and φg∧¬ψ are both large. Let φg0 = φg∧ψ and let φg1 = φg∧¬ψ.

Now fix some minimally large LM -formula θ(x), and define:

p = {ψ(x) ∈ Fx(M) | θ ∧ ψ is large}.

I claim that this type is countably satisfiable in M . Indeed, consider a
countable Σ ⊆ p, so θ∧σ is large for all σ ∈ Σ. Since θ is minimally large, θ∧¬σ
is small, i.e., (θ ∧¬σ)(M) is countable for all σ ∈ Σ. So B =

⋃
σ∈Σ(θ ∧¬σ)(M)

is countable. Since θ(M) is uncountable, θ(M) \B is non-empty. Any element
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of this set satisfies Σ. It follows that p is consistent, and p is complete because
θ(x) is minimally large.

Now let a ∈ U satisfy p. Note that a /∈ M : for all m ∈ M , θ ∧ (x ̸= m) is
large, so (x ̸= m) ∈ p. By Corollary 5.12, since T is totally transcendental, T
has a model N which is prime and atomic over M ∪ {a}. Then M ≺ N , and
it remains to show that every complete type over M realized in N is countably
satisfiable in M .

Let b ∈ Ny and let ∆ be a countable subset of tp(b/M). Since N is atomic
over M ∪ {a}, tp(b/M ∪ {a}) is isolated, say by χ(y, a) (where χ(y, x) is an
LM -formula). Now ∃y χ(y, x) ∈ tp(a/M) = p(x), and for all δ(y) ∈ ∆, since
δ(y) ∈ tp(b/M ∪ {a}), we have

∀y(χ(y, x) → δ(y)) ∈ tp(a/M) = p(x).

Since p is countably satisfiable in M , there is some a′ ∈M such that

M |= ∃y χ(y, a′) and for all δ(y) ∈ ∆, M |= ∀y(χ(y, a′) → δ(y)).

Picking b′ ∈ My such that M |= χ(b′, a′), we have M |= δ(b′) for all δ(y) ∈ ∆.
So ∆ is realized in M .

For us, the key property of the extension M ≺ N constructed in Lemma 7.15
is that N does not add any new elements to countable definable subsets of M .
Indeed, if φ(M) is countable, then the countable partial type

φ(x) ∪ {x ̸= m | m ∈ φ(M)}

is not realized in M and hence is also not realized in N . So φ(N) = φ(M).

Proof of Theorem 7.6. Let κ be an uncountable cardinal. Suppose T is totally
transcendental and has a Vaughtian pair. By Theorem 7.5, T has an (ℵ1,ℵ0)-
model (M,φ(x)). That is, M |= T , φ(x) is an LM -formula, |M | = ℵ1, and
|φ(M)| = ℵ0. We will build an elementary chain (Mα)α≤κ such that for all
α ≤ κ, |Mα| ≤ κ and φ(Mα) = φ(M).

Let M0 = M . Then |M | = ℵ1 ≤ κ and φ(M0) = φ(M).
For the successor step, by Lemma 7.15, there is a proper elementary exten-

sion Mα ≺ Mα+1 such that every type over Mα realized in Mα+1 is countably
satisfiable in Mα. By Löwenheim–Skolem, we may assume |Mα+1| = |Mα| ≤ κ.
As noted above, since |φ(Mα)| = ℵ0, φ(Mα+1) = φ(Mα) = φ(M).

When γ ≤ κ is a limit ordinal, let Mγ =
⋃
α<γMα. Then |Mγ | ≤ κ · |γ| ≤ κ

and φ(Mγ) =
⋃
α<γ φ(Mα) = φ(M). In the case γ = κ, we have |Mκ| = κ (since

each extension in the κ-length chain is proper) and |φ(Mκ)| = |φ(M)| = ℵ0. So
(Mκ, φ(x)) is a (κ,ℵ0)-model.

7.2 A strongly minimal set in the prime model

The last component to our proof of Morley’s theorem is to find a strongly
minimal set with parameters in the prime model. First we note that minimal
sets are ubiquitous in totally transcendental theories.
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Lemma 7.16. Suppose T is totally transcendental, and let M |= T . Then every
infinite definable subset of M contains a minimal definable subset.

Proof. Let φ(x) be a non-algebraic LM -formula, and suppose for contradiction
that φ(M) contains no minimal definable set. We build a binary tree of non-
algebraic formulas (φg(x))g∈2<ω , contradicting T totally transcendental. Let
φ∅ be φ(x). Given φg(x), since φg(x) implies φ(x), it is not minimal, so there
is some formula ψ(x) such that φg ∧ψ and φg ∧¬ψ are both non-algebraic. Let
φg0 = φg ∧ ψ and let φg1 = φg ∧ ¬ψ.

If we apply Lemma 7.16 to the monster model U , then we obtain strongly
minimal sets. But a general model, even of a totally transcendental theory, may
fail to contain any strongly minimal sets.

Example 7.17. Consider the theory from Example 6.12. This theory is totally
transcendental, and its prime model M contains one equivalence class of size n
for all n ≥ 1, with no infinite classes. Every definable subset of M is finite or
cofinite, so every infinite definable subset of M is minimal, but no such set is
strongly minimal. Indeed, if we extend an infinite definable subset of M to U , it
will contain infinitely many equivalence classes, which are infinite and coinfinite
definable subsets. The only strongly minimal sets in U are infinite equivalence
classes (plus or minus finitely many points), and no such set is definable with
parameters in the prime model.

In Proposition 6.13, we gave a criterion for minimal sets to be strongly
minimal. We will now show that this criterion is always satisfied in theories
with no Vaughtian pairs.

Definition 7.18. We say that T eliminates ∃∞ if for every partitioned formula
φ(x; y), there is a uniform bound nφ ∈ ω such that for all b ∈ Uy, if φ(U ; b) is
finite, then |φ(U ; b)| ≤ nφ.

Let me explain the terminology. Imagine we were to extend first-order logic
with a new quantifier ∃∞ and the following semantics: M |= ∃∞xφ(x; b) if
and only if there are infinitely many a ∈ Mx such that M |= φ(a; b). If T
eliminates ∃∞, then every formula in this extended logic is T -equivalent to an
ordinary first-order formula, since ∃∞xφ(x; y) is equivalent in models of T to
∃>nφxφ(x; y).

Theorem 7.19. If T has no Vaughtian pairs, then T eliminates ∃∞.

Proof. We prove the contrapositive. Suppose T fails to eliminate ∃∞. Then
there is a formula φ(x; y) such that for all n ∈ ω, there exists b ∈ Uy such that
n < |φ(U ; b)| < ℵ0.

We aim to show by compactness that TφVP is consistent, and hence T has a
Vaughtian pair. In fact, we show that for all n ∈ ω, the LφVP-theory Tn is consis-
tent, where Tn contains (in the notation of Definition 7.10) axiom schema (1),
axioms (2) through (4), and the finite subset of schema (5) given by ∃≥kxφ(x; c)
for k ≤ n. Any finite subset of TφVP is contained in Tn for some n, so this suffices.
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Fixing n ∈ ω, pick b ∈ Uy such that n < |φ(U ; b)| < ℵ0. Let N be any
small model containing b, and let M be any proper elementary extension of N .
Interpreting the constants c as b and the predicate P as N . Since N ≺ M , (1)
and (2) are satisfied. Since b ∈ N , (3) is satisfied. Since φ(x; b) is algebraic,
φ(N ; b) = φ(M ; b). And since n < |φ(M ; b)|, M |= ∃≥kxφ(x; c) for k ≤ n.

Theorem 7.20. Suppose T is totally transcendental and has no Vaughtian
pairs. Then there is a strongly minimal formula in a single variable with pa-
rameters in the prime model of T .

Proof. First, recall that since T is totally transcendental, it has a prime model
M (by Corollary 5.12, or, by a more elementary argument, by Fact 5.8 and
Theorem 5.5). By Lemma 7.16, M contains a minimal definable set in a single
variable x, say defined by the LM -formula φ(x). By Theorem 7.19, T eliminates
∃∞. For any formula ψ(x; y), let k = max(nφ∧ψ, nφ∧¬ψ), so that for every
b ∈ My, if (φ(x) ∧ ψ(x; b))(M) is finite, it has size at most k, and if (φ(x) ∧
¬ψ(x; b))(M) is finite, it has size at most k. Since φ(M) is minimal, one of
these sets is finite for every b ∈ My, so by Proposition 6.13, φ(x) is strongly
minimal.

7.3 Classifying models by dimensions

Suppose M |= T and φ(x; b) is a strongly minimal formula with parameters b
from M . We define dimφ(x;b)(M) to be the dimension of the strongly minimal
set D = φ(M ; b), with respect to the closure operator cl(A) = acl(Ab) ∩D. As
usual, we write Ab for the set A together with the elements of the tuple b.

Theorem 7.21. The following are equivalent:

(1) T is κ-categorical for some uncountable cardinal κ.

(2) T is κ-categorical for all uncountable cardinals κ.

(3) T is totally transcendental and has no Vaughtian pairs.

Proof. (2)⇒(1): Trivial.
(1)⇒(3): This is Corollary 4.21 (with Theorem 5.3) and Corollary 7.7.
(3)⇒(2): Suppose T is totally transcendental and has no Vaughtian pairs.

By Theorem 7.20, there is a strongly minimal formula φ(x; c) with parameters
c in the prime model P |= T . Since P is atomic, p = tp(c/∅) is isolated, and
hence realized in every model.

Let M |= T be any model, pick b realizing p in M , and let D = φ(M ; b),
which is a strongly minimal set. By Corollary 5.12, T has a prime model Q over
Db, which embeds elementarily into M over Db, so D ⊆ Q ≺ M . Since T has
no Vaughtian pairs, M = Q, so M is prime over Db.

Claim 1: If |M | is uncountable, then dimφ(x;b)(M) = |M |.
Let B be a basis for D, so dimφ(x;b)(M) = |B|. Since M is prime over Db

and Db ⊆ acl(Bb):
|M | = |Db| ≤ |acl(Bb)|.
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Since b is finite, |acl(Bb)| = max(ℵ0, |B|). Since |M | is uncountable, this implies
|M | ≤ |B|. But B ⊆M , so dimφ(x;b)(M) = |B| = |M |.

Claim 2: Suppose M ′ |= T is another model and b′ is a realization of p in
M ′. If dimφ(x;b)(M) = dimφ(x;b′)(M

′), then M ∼= M ′.
First note that since b and b′ realize the same type over ∅, there is a partial

elementary bijection f mapping b to b′. Let B be a basis for D, and let B′ be
a basis for D′ = φ(M ′; b′). Since |B| = |B′|, we can pick a bijection between
B and B′. Any finite tuple from B of length n realizes the type qn of an
independent n-tuple from D over b, and any finite tuple of length n from B′

realizes the type f∗qn of an independent n-tuple from D′ over b′ = f(b), so f
extends to a partial elementary bijection g : Bb→ B′b′. Since D ⊆ acl(Bb) and
D′ ⊆ acl(B′b′), by Proposition 6.20, g extends to a partial elementary bijection
h : Db→ D′b′.

Now since M is prime over Db, h extends to an elementary embedding
i : M → N . Then we have D′ ⊆ i(M) ≺ N . Since T has no Vaughtian pairs,
i(M) = N , so i is an isomorphism M ∼= N .

The result follows from the two claims. If κ is uncountable and M,M ′ |= T
with |M | = |M ′| = κ, then picking b realizing p in M and b′ realizing p in
M ′, we have dimφ(x;b)(M) = κ = dimφ(x;b′)(M

′), so M ∼= M ′. Thus T is
κ-categorical.

Definition 7.22. We say T is uncountably categorical if it satisfies the
equivalent conditions in Theorem 7.21.

The notion of dimension for models of uncountably categorical theories in-
troduced in the proof of Theorem 7.21 depends on a number of choices. First,
we must pick a formula φ(x; y) and an isolated type p ∈ Sy(∅) so that for any
realization b of p, φ(x; b) is a strongly minimal formula. This is a choice that can
be fixed in advance and used uniformly for all models of T . More troublingly,
to assign a dimension to M |= T , we must pick a realization b of p in M .

For uncountable models, we showed that dimφ(x;b)(M) = |M |, so the dimen-
sion is independent of all the choices above: every strongly minimal set in M
has dimension |M |. But for countable models, it is less clear that dimφ(x;b)(M)
is an invariant of M , rather than of the pair (M, b). To classify the countable
models of T , we would like to show dimφ(x;b)(M) does not depend on the choice
of b, from which it follows that dimφ(x;b)(M) ̸= dimφ(x;b′)(M

′) implies M ̸∼= M ′.

For the rest of this section, we assume T is uncountably categorical,
and we fix a formula φ(x; y), where x is a single variable, and an
isolated type p ∈ Sy(∅) so that for any realization b of p, φ(x; b) is
strongly minimal. We follow the proof in Tent and Ziegler, Section 6.3.

Theorem 7.23. Let b be a realization of p in a countable model M |= T . Then
dimφ(x;b)(M) = ℵ0 if and only if M is saturated.
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Proof. Assume M is saturated. Let a = (a1, . . . , an) be a finite tuple from
the strongly minimal set D = φ(M ; b). Let q(x) ∈ Sx(ab) be the unique non-
algebraic type over ab containing φ(x; b). Since M is ℵ0-saturated, q is realized
in M , say by c, and c ∈ D \ cl(a), so a is not a basis for D. Since D has no
finite basis, dimφ(x;b)(M) = ℵ0.

Conversely, suppose dimφ(x;b)(M) = ℵ0. Since T is ℵ0-stable, T has a count-
able saturated model M ′ by Theorem 2.18. Letting b′ be a realization of p in
M ′, the argument above shows that dimφ(x;b′)(M

′) = ℵ0. Then M ∼= M ′, so M
is saturated.

It follows from the theorem that if a model M contains a strongly minimal set
of dimension ℵ0, then M is countable and saturated, so every strongly minimal
set in M has dimension ℵ0. Thus in this case too, the dimension is independent
of all choices. So we can restrict attention to models in which every strongly
minimal set has finite dimension.

Definition 7.24. A countable model M |= T is finite dimensional if it is
not saturated. Equivalently, by Theorem 7.23, if dimφ(x;b)(M) is finite for all b
realizing p in M .

Note that if T is ℵ0-categorical, then every countable model of T is saturated,
so T has no finite dimensional models.

Lemma 7.25. Assume T is not ℵ0-categorical. Then any model which is prime
over a finite set is finite-dimensional.

Proof. Suppose M |= T is prime over a finite set A. Then M is countable and
by Corollary 5.12, M is atomic over A. Since T is not ℵ0-categorical, by Ryll-
Nardzewski there is some n such that Sn(∅) is infinite. Then Sn(A) is infinite,
and hence, by compactness, there is a non-isolated type q ∈ Sn(A), which is not
realized in M , so M is not ℵ0-saturated, and hence is finite dimensional.

For the analysis of finite dimensional models, it will be useful to consider a
notion of “relative dimension”. Suppose b is a realization of p in M |= T . For
any set C containing b, we define dimφ(x;b)(M/C) to be the dimension of the
strongly minimal set D = φ(M ; b) viewed as a set defined over C, i.e., with
respect to the closure operator

cl(A) = acl(A ∪ C) ∩D.

Note that if C ⊆ C ′ ⊆ M , then dimφ(x;b)(M/C ′) ≤ dimφ(x;b)(M/C). For
example, dimφ(x;b)(M/M) = 0.

When the base set C is a model, the relative dimension has a particularly
simple description, which is also independent of all choices.

Lemma 7.26. Let b be a realization of p in M |= T , and let N be a finite-
dimensional elementary extension of M . Then dimφ(x;b)(N/M) is the maximal
length ℓ of an elementary chain:

M = M0 ≺M1 ≺ · · · ≺Mℓ = N.
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Proof. Write d for dimφ(x;b)(N/M), and write ℓ for the maximal length of an
elementary chain as in the statement of the lemma.

To show d ≤ ℓ, let a1, . . . , ad be a basis for φ(N ; b) over M . Let M0 = M ,
let Md = N , and for all 0 < i < d, let Mi be a prime model over Ma1 . . . ai.
Since Ma1 . . . ai ⊆ Mi+1, we may assume Mi ⪯ Mi+1 for all i. By Corol-
lary 5.12, Mi is atomic over Ma1 . . . ai. The clopen set [φ(x; b)] in the type
space Sx(Ma1 . . . ai) contains infinitely many algebraic types over Ma1 . . . ai,
each of which is isolated, together with a unique non-algebraic type, which (by
compactness) is not isolated, and hence is not realized in Mi. Since a1, . . . , ad
is independent over M , tp(ai+1/Ma1 . . . ai) is not algebraic, so ai+1 /∈ Mi. It
follows that we have a chain of proper elementary extensions

M = M0 ≺M1 ≺ · · · ≺Md = N,

so d ≤ ℓ.
To show ℓ ≤ d, suppose we have an elementary chain

M = M0 ≺M1 ≺ · · · ≺Mℓ = N.

For each 0 < i ≤ ℓ, since T has no Vaughtian pairs, φ(Mi−1; b) ⊊ φ(Mi; b).
Pick some ai ∈ φ(Mi; b)\φ(Mi−1; b). By induction, since Ma1 . . . ai−1 ⊆Mi−1,
acl(Ma1 . . . ai−1) ⊆ Mi−1, so ai /∈ acl(Ma1 . . . ai−1). It follows by Lemma 6.27
that a1, . . . , aℓ is independent over M . Since any independent set can be ex-
tended to a basis, d ≥ ℓ.

Lemma 7.27. Let b be a realization of p in M |= T , and let D = φ(M ; b). If
a1, . . . , an ∈ φ(U ; b) are independent over Db, then they are independent over
M .

Proof. Suppose not. Then without loss of generality tp(a1/Ma2 . . . an) is alge-
braic, so there is an algebraic formula ψ(x1, a2, . . . , an, c) in tp(a1/Ma2 . . . an),
where c ∈Mz. We use stable embeddedness to move the parameters c inside D.
More precisely, consider the partitioned formula ψ(x1, . . . , xn; z). Since T is to-
tally transcendental, hence stable, by Proposition 3.16, tpψ

opp

z (c/D) is definable,
say by χ(x1, . . . , xn; d) with d a tuple from D. Then

M |= ∀x1, . . . , xn

((
n∧
i=1

φ(xi; b)

)
→ (χ(x1, . . . , xn; d) ↔ ψ(x1, . . . , xn; c))

)
,

so the same is true in U . It follows that φ(x1; b) ∧ χ(x1, a2, . . . , an; d) is an
algebraic formula satisfied by a1 with parameters in Db, so a1, . . . , an is not
independent over Db.

Lemma 7.28. Let M ⪯ N be finite-dimensional models of T and b a realization
of p in M . Then dimφ(x;b)(N) = dimφ(x;b)(N/M) + dimφ(x;b)(M).

Proof. Let BM be a basis for D = φ(M ; b) over b, so dimφ(x;b)(M) = |BM |.
By Theorem 6.28, we can extend BM to a basis BN for φ(N ; b) over b, so
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dimφ(x;b)(N) = |BN |. It remains to show that B = BN \ BM is a basis for
φ(N ; b) over M , since then

dimφ(x;b)(N/M) = |B| = |BN | − |BM | = dimφ(x;b)(N) − dimφ(x;b)(M).

Generating: Since φ(N ; b) ⊆ acl(BNb) and BNb ⊆ BM , φ(N ; b) ⊆ acl(BM).
Independence: Since BN is independent, B is independent over BMb, and

hence over Db ⊆ acl(BMb). By Lemma 7.27, B is independent over M .

Let M be a finite dimensional model of T , and let b1 and b2 be realizations
of p in M . We define

diffM (b1, b2) = dimφ(x;b1)(M) − dimφ(x;b2)(M).

Our goal is to show that diffM (b1, b2) = 0 always.

Lemma 7.29. The value diffM (b1, b2) depends only on tp(b1, b2/∅). That
is, if b′1, b

′
2 realizes tp(b1, b2/∅) in a finite dimensional model M ′ |= T , then

diffM (b1, b2) = diffM ′(b′1, b
′
2).

Proof. Let N be a prime model over b1b2. We may assume N ⪯ M . Now by
Lemma 7.28:

diffM (b1, b2) = dimφ(x;b1)(M) − dimφ(x;b2)(M)

= (dimφ(x;b1)(M/N) + dimφ(x;b1)(N))

− (dimφ(x;b2)(M/N) + dimφ(x;b2)(N))

= diffN (b1, b2)

since dimφ(x;b1)(M/N) = dimφ(x;b2)(M/N) by Lemma 7.26.
Now the partial elementary map f(bi) = b′i extends to an elementary embed-

ding N →M ′ with image N ′ ⪯M ′. Since N ∼= N ′ by an isomorphism mapping
bi to b′i, diffN (b1, b2) = diffN ′(b′1, b

′
2). The same argument as above shows that

diffN ′(b′1, b
′
2) = diffM ′(b′1, b

′
2). So diffM (b1, b2) = diffM ′(b′1, b

′
2).

We are ready to prove that the dimension is independent of the choice of
parameter.

Theorem 7.30. Let b1 and b2 be realizations of p in M |= T . Then

dimφ(x;b1)(M) = dimφ(x;b2)(M).

Proof. If M is uncountable, then we showed in the proof of Theorem 7.21 that
dimφ(x;b1)(M) = dimφ(x;b2)(M) = |M |. If M is countable and saturated, then
dimφ(x;b1)(M) = dimφ(x;b2)(M) = ℵ0 by Theorem 7.23. If M is countable and
not saturated, then M is finite dimensional. It remains to show in this case that
diffM (b1, b2) = 0.

Since we have a finite dimensional model, T is not ℵ0-categorical. For any
realizations b′1 and b′2 of p in U , by Lemma 7.25 b′1 and b′2 are contained in
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some finite dimensional model, and we are justified in writing diff(b′1, b
′
2), with-

out mentioning the model, since this value depends only on tp(b1, b2/∅) by
Lemma 7.29.

Let q(y, z) = tp(b1, b2). In U , extend b1 and b2 to a sequence (bn)n≥1 of
realizations of p. For each n ≥ 2, since tp(bn) = tp(b1) = p(y), the type q(bn, z)
is consistent, and we can pick bn+1 realizing it. By Lemma 7.29, diff(bn, bn+1) =
diff(b1, b2) for all n.

Let α = MR(p), and let d = MD(p). By Corollary 5.25, for any b realizing p,
p has at most d generic extensions to Sy(b). That is, there are at most d types
r(y, z) such that r(y, b) extends p and has Morley rank α.

Let p′ ∈ Sy((bn)n≥1) be a generic extension of p, so MR(p′) = α, and let c
realize p′ in U . For each n, p ⊆ tp(c/bn) ⊆ p′, so tp(c/bn) has Morley rank α.
Thus tp(c, bn) is one of d possible types. It follows that there are some i < j
such that tp(c, bi) = tp(c, bj), and hence diff(c, bi) = diff(c, bj) by Lemma 7.29.
We compute:

diff(bi, bj) =

j−1∑
k=i

diff(bi, bi+1)

=

j−1∑
k=i

diff(b1, b2)

= (j − i)diff(b1, b2).

But also:

diff(bi, bj) = diff(bi, c) + diff(c, bj)

= −diff(c, bi) + diff(c, bj)

= 0.

Thus 0 = (j − 1)diff(b1, b2), so diff(b1, b2) = 0, as desired.

By Theorem 7.30, we are justified in writing dimφ(M) for the common value
of dimφ(x;b)(M) for any b realizing p in M . Using this invariant, we can give a
complete description of the models of T .

Corollary 7.31. Let M and N be models of T . Then M ∼= N if and only if
dimφ(M) = dimφ(N). Let P be the prime model of T .

(1) If dimφ(P ) = ℵ0, then T is ℵ0-categorical.

(2) If dimφ(P ) = n is finite, then for all cardinals k with n ≤ k ≤ ℵ0, there
is a unique (up to isomorphism) model Mk |= T with dimφ(Mk) = k. In
particular, T has countably many countable models, which can be arranged
in an elementary chain:

P = Mn ≺Mn+1 ≺Mn+2 ≺ · · · ≺Mℵ0 .
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Proof. The first statement follows from Theorem 7.21 and the well-definedness
of dimφ. If dimφ(P ) = ℵ0, then by Lemma 7.25, T is ℵ0-categorical. Suppose
dimφ(P ) = n, and let b be a realization of p in P . The countable saturated
model of T has dimension ℵ0. For finite k ≥ n, let d = k− n and let Mk be the
prime model over d elements of φ(U ; b) which are independent over P . Then by
Lemma 7.28, dimφ(M) = dimφ(M/P ) + dimφ(P ) = d + n = k. These models
can be arranged in an elementary chain just as in the proof of Lemma 7.28.
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